Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979296

RESUMO

Transcription factors (TFs) drive significant cellular changes in response to environmental cues and intercellular signaling. Neighboring cells influence TF activity and, consequently, cellular fate and function. Spatial transcriptomics (ST) captures mRNA expression patterns across tissue samples, enabling characterization of the local microenvironment. However, these datasets have not been fully leveraged to systematically estimate TF activity governing cell identity. Here, we present STAN ( S patially informed T ranscription factor A ctivity N etwork), a linear mixed-effects computational method that predicts spot-specific, spatially informed TF activities by integrating curated TF-target gene priors, mRNA expression, spatial coordinates, and morphological features from corresponding imaging data. We tested STAN using lymph node, breast cancer, and glioblastoma ST datasets to demonstrate its applicability by identifying TFs associated with specific cell types, spatial domains, pathological regions, and ligand-receptor pairs. STAN augments the utility of ST to reveal the intricate interplay between TFs and spatial organization across a spectrum of cellular contexts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...