Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 6(12): 1758-1779, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093832

RESUMO

Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.

2.
ACS Appl Bio Mater ; 6(9): 3532-3554, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37294445

RESUMO

Recent preclinical and clinical studies have focused on the active area of therapeutic peptides due to their high potency, selectivity, and specificity in treating a broad range of diseases. However, therapeutic peptides suffer from multiple disadvantages, such as limited oral bioavailability, short half-life, rapid clearance from the body, and susceptibility to physiological conditions (e.g., acidic pH and enzymolysis). Therefore, high peptide dosages and dose frequencies are required for effective patient treatment. Recent innovations in pharmaceutical formulations have substantially improved therapeutic peptide administration by providing the following advantages: long-acting delivery, precise dose administration, retention of biological activity, and improvement of patient compliance. This review discusses therapeutic peptides and challenges in their delivery and explores recent peptide delivery formulations, including micro/nanoparticles (based on lipids, polymers, porous silicon, silica, and stimuli-responsive materials), (stimuli-responsive) hydrogels, particle/hydrogel composites, and (natural or synthetic) scaffolds. This review further covers the applications of these formulations for prolonged delivery and sustained release of therapeutic peptides and their impact on peptide bioactivity, loading efficiency, and (in vitro/in vivo) release parameters.


Assuntos
Hidrogéis , Peptídeos , Humanos , Polímeros
3.
J Microsc ; 287(1): 32-44, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35443072

RESUMO

The present research comes up with a novel DNA-loaded poly-L-lysine (PLL)/hyaluronan (HA) nanocarrier (DNA-loaded PLL/HA NCs) for gene delivery applications, as a promising candidate for gene delivery into diverse cells. A straightforward approach was employed to prepare such a nanosystem through masking DNA-loaded PLL molecules by HA. Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to analyse the interaction of the molecules as well as the physicochemical properties of the NCs. The NCs showed a negative charge of -24 ± 3 mV, with an average size of 138 ± 6 nm, in an ellipsoid-shape with smooth surfaces. The DNA loading efficiency (LE) measured by DNA absorbance was around 95 %. The MTT assay showed that the developed NCs are non-toxic to the cells. Furthermore, the uptake of the DNA-loaded PLL/HA NCs by the human embryonic kidney (HEK)-293T cells was evaluated by a flow cytometry method, and demonstrated high potential cellular uptake over 90% for transferring the gene to HEK-293T cells at the optimised conditions. Therefore, the DNA-loaded PLL/HA NCs are the potent strategy for developing nanosystems for gene delivery applications.


Assuntos
Ácido Hialurônico , Polilisina , DNA/química , DNA/genética , Humanos , Ácido Hialurônico/química , Microscopia Eletrônica de Transmissão , Polilisina/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Adv Drug Deliv Rev ; 123: 33-64, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782570

RESUMO

According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.


Assuntos
Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Queimaduras/terapia , Imunoterapia , Infecções/tratamento farmacológico , Nanomedicina , Cicatrização/efeitos dos fármacos , Animais , Humanos , Nanoestruturas/química
5.
Int J Biol Macromol ; 106: 266-276, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28802850

RESUMO

Here, using (poly(N-isopropylacrylamide)-co-oleic acid)-g-chitosan ((PNIPAAm-co-OA)-g-CS), CS copolymer-gold hybrid nanoparticles (CGH NPs) were synthesized by autoreduction of auric cations (HAuCl4) in aqueous solution in the absence of any other reducing agent. The engineered thermo-sensitive CS copolymer with free amino groups could reduce auric cations and stabilized the resultant NPs. CGH NPs were prepared using different concentrations of CS copolymer (0.1-1% w/v) and HAuCl4 (50-500µL, 0.2% w/v). They were characterized in terms of structure, surface Plasmon band, zeta potential, atomic absorption, stability, size and size distribution. The obtained CGH NPs showed a size range of 80-100nm and high stability at different pHs with no observable agglomeration/sedimentation for couple of months. The loading efficiency of erlotinib (ETB) in the CGH NPs was about 30%. The ETB was released from the CGH NPs in a thermo-responsive manner. FACS flow cytometry analysis confirmed high cellular uptake (85.81%) of CGH NPs by A549 cells. The cytotoxicity evaluations proved the cytocompatibility and high anti-tumor effect of the engineered CGH NPs. Based on these findings, having used thermo-sensitive CS copolymer, CGH NPs were obtained in one-pot procedure, which could be considered as stimuli-responsive delivery system with potential biomedical applications.


Assuntos
Resinas Acrílicas/química , Antineoplásicos/farmacologia , Quitosana/química , Portadores de Fármacos , Cloridrato de Erlotinib/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Células A549 , Antineoplásicos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Cloridrato de Erlotinib/metabolismo , Humanos , Cinética , Nanopartículas Metálicas/ultraestrutura , Oxirredução , Tamanho da Partícula , Temperatura
6.
Crit Rev Biotechnol ; 38(1): 47-67, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28434263

RESUMO

For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.


Assuntos
Sistemas de Liberação de Medicamentos , Nanomedicina , Proteínas de Plantas , Animais , Gliadina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Tamanho da Partícula , Proteínas Recombinantes , Zeína , Leguminas
7.
J Am Chem Soc ; 139(13): 4584-4610, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28192672

RESUMO

Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/efeitos da radiação , Luz , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Animais , Humanos , Nanomedicina
8.
Bioimpacts ; 7(4): 269-277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29435435

RESUMO

Introduction: Stimuli-responsive nanocarriers offer unique advantages over the traditional drug delivery systems (DDSs) in terms of targeted drug delivery and on-demand release of cargo drug molecules. Of these, chitosan (CS)-based DDSs offer several advantages such as high compatibility with biological settings. Methods: In this study, we surveyed the literature in terms of the stimuli-responsive nanocarriers and discussed the most recent advancements in terms of CS-based nanosystems and their applications in cancer therapy and diagnosis. Results: These advanced DDSs are able to release the entrapped drugs in response to a specific endogenous stimulus (e.g., pH, glutathione concentration or certain enzymes) or exogenous stimulus (e.g., temperature, light, ultrasound, and magnetic field) at the desired time and target site. Dual-responsive nanocarriers by the combination of different stimuli have also been developed as efficient and improved DDSs. Among the stimuli-responsive nanocarriers, CS-based DDSs offer several advantages, including biocompatibility and biodegradability, antibacterial activity, ease of modification and functionalization, and non-immunogenicity. They are as one of the most ideal smart multifunction DDSs. Conclusion: The CS-based stimuli-responsive multifunctional nanosystems (NSs) offer unique potential for the targeted delivery of anticancer agents and provide great potential for on-demand and controlled-release of anticancer agents in response to diverse external/internal stimuli.

9.
ACS Appl Mater Interfaces ; 8(33): 21107-33, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27349465

RESUMO

Smart drug delivery systems (DDSs) have attracted the attention of many scientists, as carriers that can be stimulated by changes in environmental parameters such as temperature, pH, light, electromagnetic fields, mechanical forces, etc. These smart nanocarriers can release their cargo on demand when their target is reached and the stimulus is applied. Using the techniques of nanotechnology, these nanocarriers can be tailored to be target-specific, and exhibit delayed or controlled release of drugs. Temperature-responsive nanocarriers are one of most important groups of smart nanoparticles (NPs) that have been investigated during the past decades. Temperature can either act as an external stimulus when heat is applied from the outside, or can be internal when pathological lesions have a naturally elevated termperature. A low critical solution temperature (LCST) is a special feature of some polymeric materials, and most of the temperature-responsive nanocarriers have been designed based on this feature. In this review, we attempt to summarize recent efforts to prepare innovative temperature-responsive nanocarriers and discuss their novel applications.


Assuntos
Nanopartículas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Polímeros , Temperatura
10.
Nanomedicine (Lond) ; 11(5): 513-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26906471

RESUMO

Nanotechnology could provide a new complementary approach to treat coronary artery disease (CAD) which is now one of the biggest killers in the Western world. The course of events, which leads to atherosclerosis and CAD, involves many biological factors and cellular disease processes which may be mitigated by therapeutic methods enhanced by nanotechnology. Nanoparticles can provide a variety of delivery systems for cargoes such as drugs and genes that can address many problems within the arteries. In order to improve the performance of current stents, nanotechnology provides different nanomaterial coatings, in addition to controlled-release nanocarriers, to prevent in-stent restenosis. Nanotechnology can increase the efficiency of drugs, improve local and systematic delivery to atherosclerotic plaques and reduce the inflammatory or angiogenic response after intravascular intervention. Nanocarriers have potential for delivery of imaging and diagnostic agents to precisely targeted destinations. This review paper will cover the current applications and future outlook of nanotechnology, as well as the main diagnostic methods, in the treatment of CAD.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Doença da Artéria Coronariana/patologia , Portadores de Fármacos/uso terapêutico , Humanos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-26762467

RESUMO

In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website.


Assuntos
Portadores de Fármacos , Concentração de Íons de Hidrogênio , Nanopartículas , Animais , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Humanos , Camundongos , Modelos Biológicos , Nanopartículas/química , Nanopartículas/uso terapêutico
12.
Chem Soc Rev ; 45(5): 1457-501, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26776487

RESUMO

New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.


Assuntos
DNA/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , DNA/química , Concentração de Íons de Hidrogênio , Micelas , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...