Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(9): 1668-1674, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103558

RESUMO

Amyloid-ß (Aß) is thought to be neuronally derived in Alzheimer's disease (AD). However, transcripts of amyloid precursor protein (APP) and amyloidogenic enzymes are equally abundant in oligodendrocytes (OLs). By cell-type-specific deletion of Bace1 in a humanized knock-in AD model, APPNLGF, we demonstrate that OLs and neurons contribute to Aß plaque burden. For rapid plaque seeding, excitatory projection neurons must provide a threshold level of Aß. Ultimately, our findings are relevant for AD prevention and therapeutic strategies.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Ácido Aspártico Endopeptidases , Neurônios , Oligodendroglia , Placa Amiloide , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Placa Amiloide/patologia , Placa Amiloide/metabolismo
2.
Alzheimers Dement ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212313

RESUMO

INTRODUCTION: Cellular prion protein (PrPC) was implicated in amyloid beta (Aß)-induced toxicity in Alzheimer's disease (AD), but the precise molecular mechanisms involved in this process are unclear. METHODS: Double transgenic mice were generated by crossing Prnp knockout (KO) with 5xFAD mice, and light-sheet microscopy was used for whole brain tissue analyses. PrPC-overexpressing cells were developed for in vitro studies, and microscopy was used to assess co-localization of proteins of interest. Surface-plasmon resonance (SPR) was used to investigate protein-binding characteristics. RESULTS: In vivo, PrPC levels correlated with reduced lifespan and cognitive and motor function, and its ablation disconnected behavior deficits from Aß levels. Light-sheet microscopy showed that PrPC influenced Aß-plaque burden but not the distribution of those plaques. Interestingly, caveolin-1 (Cav-1) KO neurons significantly reduced intracellular Aß-oligomer (Aßo) uptake when compared to wild-type neurons. DISCUSSION: The findings shed new light on the relevance of intracellular Aßo, suggesting that PrPC and Cav-1 modulate intracellular Aß levels and the Aß-plaque load. HIGHLIGHTS: PrPC expression adversely affects lifespan and behavior in 5xFAD mice. PrPC increases Aß1-40 and Aß1-42 levels and Aß-plaque load in 5xFAD mice. Cav-1 interacts with both PrPC and Aß peptides. Knocking out Cav-1 leads to a significant reduction in intracellular Aß levels.

4.
Glia ; 72(8): 1374-1391, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587131

RESUMO

Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.


Assuntos
Axônios , Glicólise , L-Lactato Desidrogenase , Oligodendroglia , Animais , Oligodendroglia/metabolismo , Axônios/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Glicólise/fisiologia , Camundongos , Regulação para Baixo/fisiologia , Camundongos Endogâmicos C57BL , Lactato Desidrogenase 5/metabolismo , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Camundongos Transgênicos , Isoenzimas/metabolismo , Isoenzimas/genética , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Camundongos Knockout
5.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659917

RESUMO

Afferent neurons in developing sensory organs exhibit a prolonged period of burst firing prior to the onset of sensory experience. This intrinsically generated activity propagates from the periphery through central processing centers to promote the survival and physiological maturation of neurons and refine their synaptic connectivity. Recent studies in the auditory system indicate that these bursts of action potentials also trigger metabotropic glutamate receptor-mediated calcium increases within astrocytes that are spatially and temporally correlated with neuronal events; however, it is not known if this phenomenon occurs in other sensory modalities. Here we show using in vivo simultaneous imaging of neuronal and astrocyte calcium activity in awake mouse pups that waves of retinal ganglion cell activity induce spatially and temporally correlated waves of astrocyte activity in the superior colliculus that depend on metabotropic glutamate receptors mGluR5 and mGluR3. Astrocyte calcium transients reliably occurred with each neuronal wave, but peaked more than one second after neuronal events. Despite differences in the temporal features of spontaneous activity in auditory and visual processing regions, individual astrocytes exhibited similar overall calcium activity patterns, providing a conserved mechanism to synchronize neuronal and astrocyte maturation within discrete sensory domains.

6.
EMBO Mol Med ; 16(3): 616-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383802

RESUMO

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Roedores/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Serina-Treonina Quinases TOR
7.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032389

RESUMO

Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.


Assuntos
Astrócitos , Permeabilidade da Membrana Celular , Conexina 43 , Ubiquitina-Proteína Ligases Nedd4 , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Humanos , Camundongos , Conexina 43/genética , Mutação de Sentido Incorreto , Proteostase , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Epilepsia
8.
Annu Rev Neurosci ; 46: 59-78, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428605

RESUMO

All mammalian cell membranes contain cholesterol to maintain membrane integrity. The transport of this hydrophobic lipid is mediated by lipoproteins. Cholesterol is especially enriched in the brain, particularly in synaptic and myelin membranes. Aging involves changes in sterol metabolism in peripheral organs and also in the brain. Some of those alterations have the potential to promote or to counteract the development of neurodegenerative diseases during aging. Here, we summarize the current knowledge of general principles of sterol metabolism in humans and mice, the most widely used model organism in biomedical research. We discuss changes in sterol metabolism that occur in the aged brain and highlight recent developments in cell type-specific cholesterol metabolism in the fast-growing research field of aging and age-related diseases, focusing on Alzheimer's disease. We propose that cell type-specific cholesterol handling and the interplay between cell types critically influence age-related disease processes.


Assuntos
Envelhecimento , Doença de Alzheimer , Camundongos , Humanos , Animais , Idoso , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo
9.
Nat Neurosci ; 26(7): 1218-1228, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386131

RESUMO

Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment. Given that axonal pathology in multiple sclerosis is already visible at early disease stages, before overt demyelination, we reasoned that autoimmune inflammation may disrupt oligodendroglial support mechanisms and hence primarily affect axons insulated by myelin. Here, we studied axonal pathology as a function of myelination in human multiple sclerosis and mouse models of autoimmune encephalomyelitis with genetically altered myelination. We demonstrate that myelin ensheathment itself becomes detrimental for axonal survival and increases the risk of axons degenerating in an autoimmune environment. This challenges the view of myelin as a solely protective structure and suggests that axonal dependence on oligodendroglial support can become fatal when myelin is under inflammatory attack.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Bainha de Mielina/metabolismo , Axônios/metabolismo , Esclerose Múltipla/patologia , Encefalomielite Autoimune Experimental/patologia , Fatores de Risco
10.
Nature ; 618(7964): 349-357, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258678

RESUMO

The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-ß (Aß) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aß-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aß plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Bainha de Mielina , Placa Amiloide , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Axônios/metabolismo , Axônios/patologia , Microglia/metabolismo , Microglia/patologia , Análise da Expressão Gênica de Célula Única , Fatores de Risco , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...