Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Neuro Oncol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835160

RESUMO

BACKGROUND: Neurocognition can be severely affected in pediatric brain tumor survivors. We analyzed the association of cognitive functioning with radiotherapy dose, postoperative cerebellar mutism syndrome (pCMS), hydrocephalus, intraventricular methotrexate (MTX) application, tumor localization and biology in pediatric survivors of a posterior fossa tumor. METHODS: Subdomain-specific neurocognitive outcome data from 279 relapse-free survivors of the HIT-2000 trial (241 medulloblastoma and 38 infratentorial ependymoma) using the Neuropsychological Basic Diagnostic (NBD) tool based on Cattell-Horn-Carroll's model for intelligence were analyzed. RESULTS: Cognitive performance 5.14 years (mean; range=1.52-13.02) after diagnosis was significantly below normal for all subtests. Processing speed and psychomotor abilities were most affected. Influencing factors were domain-specific: CSI-dose had strong impact on most subtests. pCMS was associated with psychomotor abilities (ß=-0.25 to -0.16) and processing speed (ß=-0.32). Postoperative hydrocephalus correlated with crystallized intelligence (ß=-0.20) and short-term memory (ß=-0.15), age with crystallized intelligence (ß=0.15) and psychomotor abilities (ß=-0.16 and ß=-0.17). Scores for fluid intelligence (ß=-0.23), short-term memory (ß=-0.17) and visual processing (ß=-0.25) declined, and scores for selective attention improved (ß=0.29) with time after diagnosis. CONCLUSION: Dose of CSI was strongly associated with neurocognitive outcome. Low psychomotor abilities and processing speed both in patients treated with and without CSI suggest a strong contribution of the tumor and its surgery on these functions. Future research therefore should analyze strategies to both reduce CSI-dose and toxicity caused by other treatment modalities.

2.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854109

RESUMO

Meningiomas are the most common primary brain tumors in adults. Although generally benign, a subset of meningiomas is of higher grade, shows aggressive growth behavior and recurs even after multiple surgeries. Around half of all meningiomas harbor inactivating mutations in NF2. While benign low-grade NF2 mutant meningiomas exhibit few genetic events in addition to NF2 inactivation, aggressive high-grade NF2 mutant meningiomas frequently harbor a highly aberrant genome. We and others have previously shown that NF2 inactivation leads to YAP1 activation and that YAP1 acts as the pivotal oncogenic driver in benign NF2 mutant meningiomas. Using bulk and single-cell RNA-Seq data from a large cohort of human meningiomas, we show that aggressive NF2 mutant meningiomas harbor decreased levels YAP1 activity compared to their benign counterparts. Decreased expression levels of YAP target genes are significantly associated with an increased risk of recurrence. We then identify the increased expression of the YAP1 competitor VGLL4 as well as the YAP1 upstream regulators FAT3/4 as a potential mechanism for the downregulation of YAP activity in aggressive NF2 mutant meningiomas. High expression of these genes is significantly associated with an increased risk of recurrence. In vitro, overexpression of VGLL4 resulted in the downregulation of YAP activity in benign NF2 mutant meningioma cells, confirming the direct link between VGLL4 expression and decreased levels of YAP activity observed in aggressive NF2 mutant meningiomas. Our results shed new insight on the biology of benign and aggressive NF2 mutant meningiomas and may have important implications for the efficacy of therapies targeting oncogenic YAP1 activity in NF2 mutant meningiomas.

3.
Acta Neuropathol ; 147(1): 95, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847845

RESUMO

The non-WNT/non-SHH (Grp3/Grp4) medulloblastomas (MBs) include eight second-generation subgroups (SGS; I-VIII) each with distinct molecular and clinical characteristics. Recently, we also identified two prognostically relevant transcriptome subtypes within each SGS MB, which are associated with unique gene expression signatures and signaling pathways. These prognostic subsets may be in connection to the intra-tumoral cell landscape that underlies SGS MB clinical-molecular diversity. Here, we performed a deconvolution analysis of the Grp3/Grp4 MB bulk RNA profiles using the previously identified single-cell RNA-seq reference dataset and focusing on variability in the cellular composition of SGS MB. RNA deconvolution analysis of the Grp3/Grp4 MB disclosed the subgroup-specific neoplastic cell subpopulations. Neuronally differentiated axodendritic GP3-C1 and glutamatergic GP4-C1 subpopulations were distributed within Grp3- and Grp4-associated SGS MB, respectively. Progenitor GP3-B2 subpopulation was prominent in aggressive SGS II MB, whereas photoreceptor/visual perception GP3/4-C2 cell content was typical for SGS III/IV MB. The current study also revealed significant variability in the proportions of cell subpopulations between clinically relevant SGS MB transcriptome subtypes, where unfavorable cohorts were enriched with cell cycle and progenitor-like cell subpopulations and, vice versa, favorable subtypes were composed of neuronally differentiated cell fractions predominantly. A higher than median proportion of proliferating and progenitor cell subpopulations conferred the shortest survival of the Grp3 and Grp 4 MB, and similar survival associations were identified for all SGS MB except SGS IV MB. In summary, the recently identified clinically relevant Grp3/Grp4 MB transcriptome subtypes are composed of different cell populations. Future studies should aim to validate the prognostic and therapeutic role of the identified Grp3/Grp4 MB inter-tumoral cellular heterogeneity. The application of the single-cell techniques on each SGS MB separately could help to clarify the clinical significance of subgroup-specific variability in tumor cell content and its relation with prognostic transcriptome signatures identified before.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Transcriptoma , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Proliferação de Células/genética , Masculino , Criança , Feminino , Pré-Escolar , Adolescente , Prognóstico
4.
Neuro Oncol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912846

RESUMO

The 2016 and 2021 World Health Organization (WHO) 2021 Classification of Central Nervous System (CNS) tumors have resulted in a major improvement of the classification of IDH-mutant gliomas. With more effective treatments many patients experience prolonged survival . However, treatment guidelines are often still based on information from historical series comprising both patients with IDHwt and IDH mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological and molecular factors associated with outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with an IDH-mutant grade 2 and grade 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.

5.
Clin Cancer Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829906

RESUMO

PURPOSE: To propose a novel recursive partitioning analysis (RPA) classification model in patients with IDH-wildtype glioblastomas that incorporates the recently expanded conception of the extent of resection (EOR) in terms of both supramaximal and total resections. EXPERIMENTAL DESIGN: This multicenter cohort study included a developmental cohort of 622 patients with IDH-wildtype glioblastomas from a single institution (Severance Hospital) and validation cohorts of 536 patients from three institutions (Seoul National University Hospital, Asan Medical Center, and Heidelberg University Hospital). All patients completed standard treatment including concurrent chemoradiotherapy and underwent testing to determine their IDH mutation and MGMTp methylation status. EORs were categorized into either supramaximal, total, or non-total resections. A novel RPA model was then developed and compared to a previous RTOG RPA model. RESULTS: In the developmental cohort, the RPA model included age, MGMTp methylation status, KPS, and EOR. Younger patients with MGMTp methylation and supramaximal resections showed a more favorable prognosis (class I: median overall survival [OS] 57.3 months), while low-performing patients with non-total resections and without MGMTp methylation showed the worst prognosis (class IV: median OS 14.3 months). The prognostic significance of the RPA was subsequently confirmed in the validation cohorts, which revealed a greater separation between prognostic classes for all cohorts compared to the previous RTOG RPA model. CONCLUSIONS: The proposed RPA model highlights the impact of supramaximal versus total resections and incorporates clinical and molecular factors into survival stratification. The RPA model may improve the accuracy of assessing prognostic groups.

6.
Trials ; 25(1): 366, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849943

RESUMO

BACKGROUND: Chemotherapy with lomustine is widely considered as standard treatment option for progressive glioblastoma. The value of adding radiotherapy to second-line chemotherapy is not known. METHODS: EORTC-2227-BTG (LEGATO, NCT05904119) is an investigator-initiated, pragmatic (PRECIS-2 score: 34 out of 45), randomized, multicenter phase III trial in patients with first progression of glioblastoma. A total of 411 patients will be randomized in a 1:1 ratio to lomustine (110 mg/m2 every 6 weeks) or lomustine (110 mg/m2 every 6weeks) plus radiotherapy (35 Gy in 10 fractions). Main eligibility criteria include histologic confirmation of glioblastoma, isocitrate dehydrogenase gene (IDH) wild-type per WHO 2021 classification, first progression at least 6 months after the end of prior radiotherapy, radiologically measurable disease according to RANO criteria with a maximum tumor diameter of 5 cm, and WHO performance status of 0-2. The primary efficacy endpoint is overall survival (OS) and secondary endpoints include progression-free survival, response rate, neurocognitive function, health-related quality of life, and health economic parameters. LEGATO is funded by the European Union's Horizon Europe Research program, was activated in March 2024 and will enroll patients in 43 sites in 11 countries across Europe with study completion projected in 2028. DISCUSSION: EORTC-2227-BTG (LEGATO) is a publicly funded pragmatic phase III trial designed to clarify the efficacy of adding reirradiation to chemotherapy with lomustine for the treatment of patients with first progression of glioblastoma. TRIAL REGISTRATION: ClinicalTrials.gov NCT05904119. Registered before start of inclusion, 23 May 2023.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Progressão da Doença , Glioblastoma , Lomustina , Estudos Multicêntricos como Assunto , Intervalo Livre de Progressão , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/radioterapia , Glioblastoma/terapia , Humanos , Lomustina/administração & dosagem , Lomustina/uso terapêutico , Lomustina/efeitos adversos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Antineoplásicos Alquilantes/uso terapêutico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Quimiorradioterapia/métodos , Ensaios Clínicos Fase III como Assunto , Ensaios Clínicos Pragmáticos como Assunto , Fatores de Tempo
7.
Cell Genom ; 4(6): 100566, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38788713

RESUMO

Meningiomas, although mostly benign, can be recurrent and fatal. World Health Organization (WHO) grading of the tumor does not always identify high-risk meningioma, and better characterizations of their aggressive biology are needed. To approach this problem, we combined 13 bulk RNA sequencing (RNA-seq) datasets to create a dimension-reduced reference landscape of 1,298 meningiomas. The clinical and genomic metadata effectively correlated with landscape regions, which led to the identification of meningioma subtypes with specific biological signatures. The time to recurrence also correlated with the map location. Further, we developed an algorithm that maps new patients onto this landscape, where the nearest neighbors predict outcome. This study highlights the utility of combining bulk transcriptomic datasets to visualize the complexity of tumor populations. Further, we provide an interactive tool for understanding the disease and predicting patient outcomes. This resource is accessible via the online tool Oncoscape, where the scientific community can explore the meningioma landscape.


Assuntos
Neoplasias Meníngeas , Meningioma , Transcriptoma , Meningioma/genética , Meningioma/patologia , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Algoritmos , Perfilação da Expressão Gênica/métodos
8.
Nat Med ; 30(6): 1622-1635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760585

RESUMO

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.


Assuntos
Neoplasias Encefálicas , Epigênese Genética , Glioma , Humanos , Prognóstico , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA/genética , Animais , Camundongos , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Pessoa de Meia-Idade , Neurônios/patologia , Neurônios/metabolismo , Adulto , Análise de Célula Única , Linhagem Celular Tumoral , Transcriptoma , Gradação de Tumores
9.
Neuro Oncol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695575

RESUMO

Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and the rising availability of neuroimaging. While most exhibit non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) working group. There also remains clinical equipoise on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive consensus narrative review directed towards clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, and management strategies for unique meningioma patient populations. In each section we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.

10.
Sci Immunol ; 9(95): eadj7970, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701193

RESUMO

Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.


Assuntos
Antígenos B7 , Células Matadoras Naturais , Linfócitos T , Humanos , Células Matadoras Naturais/imunologia , Animais , Camundongos , Antígenos B7/imunologia , Linfócitos T/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Ativação Linfocitária/imunologia , Feminino , Neoplasias Esofágicas/imunologia
11.
Neuropathol Appl Neurobiol ; 50(3): e12984, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783575

RESUMO

AIMS: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS: We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS: Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS: This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.


Assuntos
Metilação de DNA , Sequenciamento por Nanoporos , Regiões Promotoras Genéticas , Humanos , Sequenciamento por Nanoporos/métodos , Regiões Promotoras Genéticas/genética , Ilhas de CpG/genética , Proteínas Supressoras de Tumor/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Neoplasias Encefálicas/genética , Feminino , Masculino , Glioblastoma/genética , Idoso
12.
BMC Cancer ; 24(1): 449, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605332

RESUMO

BACKGROUND: While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring. METHODS: In total, 60 patients with meningiomas and an indication of radiotherapy (RT) and macroscopic tumor on the planning MRI will be enrolled. Blood samples will be obtained before the start, during, and after radiotherapy, as well as during clinical follow-up every 6 months. Extracellular vesicles will be isolated from the blood samples, quantified and correlated with the clinical treatment response or progression. Further, nanopore sequencing-based DNA methylation profiles of plasma EV-DNA will be generated for methylation-based meningioma classification. DISCUSSION: This study will explore the dynamic of plasma EVs in meningioma patients under/after radiotherapy, with the objective of identifying potential biomarkers of (early) tumor progression. DNA methylation profiling of plasma EVs in meningioma patients may enable molecular risk stratification, facilitating a molecularly-guided target volume delineation and adjusted dose prescription during RT treatment planning.


Assuntos
Vesículas Extracelulares , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/cirurgia , Neoplasias Meníngeas/cirurgia , Estudos Prospectivos , Biópsia Líquida , Biomarcadores , Vesículas Extracelulares/patologia
13.
Neurooncol Adv ; 6(1): vdae043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596719

RESUMO

Background: This study investigates the influence of diffusion-weighted Magnetic Resonance Imaging (DWI-MRI) on radiomic-based prediction of glioma types according to molecular status and assesses the impact of DWI intensity normalization on model generalizability. Methods: Radiomic features, compliant with image biomarker standardization initiative standards, were extracted from preoperative MRI of 549 patients with diffuse glioma, known IDH, and 1p19q-status. Anatomical sequences (T1, T1c, T2, FLAIR) underwent N4-Bias Field Correction (N4) and WhiteStripe normalization (N4/WS). Apparent diffusion coefficient (ADC) maps were normalized using N4 or N4/z-score. Nine machine-learning algorithms were trained for multiclass prediction of glioma types (IDH-mutant 1p/19q codeleted, IDH-mutant 1p/19q non-codeleted, IDH-wild type). Four approaches were compared: Anatomical, anatomical + ADC naive, anatomical + ADC N4, and anatomical + ADC N4/z-score. The University of California San Francisco (UCSF)-glioma dataset (n = 409) was used for external validation. Results: Naïve-Bayes algorithms yielded overall the best performance on the internal test set. Adding ADC radiomics significantly improved AUC from 0.79 to 0.86 (P = .011) for the IDH-wild-type subgroup, but not for the other 2 glioma subgroups (P > .05). In the external UCSF dataset, the addition of ADC radiomics yielded a significantly higher AUC for the IDH-wild-type subgroup (P ≤ .001): 0.80 (N4/WS anatomical alone), 0.81 (anatomical + ADC naive), 0.81 (anatomical + ADC N4), and 0.88 (anatomical + ADC N4/z-score) as well as for the IDH-mutant 1p/19q non-codeleted subgroup (P < .012 each). Conclusions: ADC radiomics can enhance the performance of conventional MRI-based radiomic models, particularly for IDH-wild-type glioma. The benefit of intensity normalization of ADC maps depends on the type and context of the used data.

14.
Acta Neuropathol Commun ; 12(1): 55, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581034

RESUMO

A novel methylation class, "neuroepithelial tumor, with PLAGL1 fusion" (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation. Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1-fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non-ZFTA/non-YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as "mixed subependymomas-ependymomas" with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1: FOXO1, EWSR1 and for the first time MAML2. The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1-fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non-ZFTA/non-YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Ependimoma , Glioma Subependimal , Neoplasias Supratentoriais , Criança , Humanos , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular , Neoplasias do Sistema Nervoso Central/genética , Ependimoma/patologia , Hibridização in Situ Fluorescente , Neoplasias Supratentoriais/patologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
15.
Brain Pathol ; : e13259, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565263

RESUMO

Meningioangiomatosis (MAM) remains a poorly understood lesion responsible for epileptic disease. In the past, MAM was primarily described in the context of neurofibromatosis type 2 before being mainly reported sporadically. Moreover, the malformative or tumoral nature is still debated. Because a subset of MAM are associated with meningiomas, some authors argue that MAM corresponds to an infiltration pattern of these tumors. For these reasons, MAM has not been added to the World Health Organization (WHO) Classification of Central Nervous System Tumors as a specific entity. In the present study, we characterized a series of pure MAM (n = 7) and MAM associated with meningiomas (n = 4) using histopathology, immunohistochemistry, genetic (fluorescent in situ and DNA sequencing analyses), and epigenetic (DNA-methylation profiling) data. We evidenced two distinct morphological patterns: MAM with a fibroblastic-like pattern having few lesional cells, and MAM with a more cellular pattern. A subset was associated with the genetic alterations previously reported in meningiomas (such as a KMT2C mutation and a hemizygous deletion of chromosome 22q including the NF2 gene). The DNA-methylation profile, using a t-distributed stochastic neighbor embedding analysis, evidenced that MAM (pure or associated with meningiomas) clustered in a separate group from pediatric meningiomas. The present results seem to suggest that MAM represents a neoplastic lesion and encourage the further study of similar additional series so that it may be included in a future WHO classification.

16.
Acta Neuropathol Commun ; 12(1): 51, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576030

RESUMO

DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number profiling suite, which has been benchmarked against an established supervised machine learning approach using in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in an intraoperative time frame.


Assuntos
Epigenômica , Neoplasias , Humanos , Aprendizado de Máquina não Supervisionado , Computação em Nuvem , Neoplasias/diagnóstico , Neoplasias/genética , Metilação de DNA
17.
Neuro Oncol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578306

RESUMO

BACKGROUND: This study aims at clarifying the impact of persistent residual lesions following first-line treatment for pediatric medulloblastoma. METHODS: Data on 84 pediatric patients with medulloblastoma and persistent residual lesions on centrally reviewed MRI at the end of first-line therapy were analyzed. RESULTS: Twenty patients (23.8%) had residual lesions in the tumor bed (R+/M0), 51 (60.7%) had distant lesions (R0/M+) and 13 (15.5%) had both (R+/M+). Overall response to first-line therapy was minor or partial (≥25% reduction, MR/PR) for 64 (76.2%) and stable disease (SD) for 20 patients (23.8%). Five-year post-primary-treatment progression-free (pptPFS) and overall survival (pptOS) were superior after MR/PR (pptPFS: 62.5±7.0%[MR/PR] vs. 35.9±12.8%[SD], p=0.03; pptOS: 79.7±5.9[MR/PR] vs. 55.5±13.9[SD], p=0.04). Further, R+/M+ was associated with a higher risk for progression (5-year pptPFS: 22.9±17.9%[R+,M+] vs. 72.4±12.0%[R+,M0]; p=0.03). Watch-and-wait was pursued in 58 patients, while n=26 received additional treatments (chemotherapy only, n=19; surgery only, n=2; combined, n=3; valproic acid, n=2), and their outcomes were not superior to watch-and-wait (5-year pptPFS: 58.5±7.7% vs. 51.6±10.7% p=0.71; 5-year pptOS: 76.3±6.9% vs. 69.8±9.7%, p=0.74). For the whole cohort, five-year pptPFS by molecular subgroup (58 cases) were WNT: 100%, SHH: 50.0±35.4%, Group-4, 52.5±10.5, Group-3 54.2±13.8%; (p=0.08). CONCLUSION: Overall response and extent of lesions can function as surrogate parameters to predict outcomes in pediatric MB patients with persistent lesions after first-line therapy. Especially in case of solitary persistent medulloblastoma MRI lesion, additional therapy was not beneficial. Therefore, treatment response, extent/kind of residual lesions and further diagnostic information needs consideration for indication of additional treatments for persisting lesions.

18.
Free Neuropathol ; 52024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38532825

RESUMO

The morphological patterns leading to the diagnosis of glioblastoma may also commonly be observed in several other distinct tumor entities, which can result in a mixed bag of tumors subsumed under this diagnosis. The 2021 WHO Classification of CNS Tumors has separated several of these entities from the diagnosis of glioblastoma, IDH-wildtype. This study determines the DNA methylation classes most likely receiving the diagnosis glioblastoma, IDH wildtype according to the definition by the WHO 2021 Classification and provides comparative copy number analyses. We identified 10782 methylome datasets uploaded to the web page www.molecularneuropathology.org with a calibrated score of ≥0.9 by the Heidelberg Brain Tumor Classifier version v12.8. These methylation classes were characterized by the diagnosis glioblastoma being the most frequent classification encountered in each of the classes according to the WHO 2021 definition. Further, methylation classes selected for this study predominantly contained adult patients. Unsupervised clustering confirmed the presence of nine methylation classes containing tumors most likely receiving the diagnosis glioblastoma, IDH-wildtype according to the WHO 2021 definition. Copy number analysis and a focus on genes with typical numerical alterations in glioblastoma revealed clear differences between the nine methylation classes. Although great progress in diagnostic precision has been achieved over the last decade, our data clearly demonstrate that glioblastoma, IDH-wildtype still is a heterogeneous group in need of further stratification.

19.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320988

RESUMO

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioma/genética , Neoplasias Encefálicas/genética , Proteína 1 Semelhante à Quitinase-3
20.
J Neurooncol ; 167(2): 245-255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334907

RESUMO

PURPOSE: Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS: Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS: Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION: Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Reoperação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/cirurgia , Medicina de Precisão , Glioma/genética , Glioma/cirurgia , Glioma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA