Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Clin Auton Res ; 34(3): 353-361, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926194

RESUMO

PURPOSE: The compensatory mechanisms supporting cerebral perfusion throughout head-up tilt (HUT) in patients with vasovagal syncope (VVS) remain unclear. We tested the hypothesis that increased cerebrovascular compliance (Ci) and decreased cerebrovascular resistance (CVR) support cerebral blood velocity (CBV) during pre-syncope in VVS. METHODS: Finger arterial blood pressure (ABP) and right middle cerebral artery blood velocity (CBV) were recorded in 15 individuals diagnosed with VVS (n = 11 female, mean age: 40 ± 16 years, mean body mass index: 24.9 ± 4.0 kg/m2) at supine rest and during HUT (80 degree angle). Individual ABP and CBV waveforms during VVS were input into a modified Windkessel model to calculate Ci and ohmic CVR. Gosling's pulsatility index (Pi; pulse amplitude/mean CBV) was calculated. RESULTS: Diastolic ABP, systolic ABP, mean ABP (72 ± 11 to 51 ± 12 mmHg), and CVR decreased progressively during presyncope (all P ≤ 0.04). As expected, systolic CBV was sustained (all P ≥ 0.29) while diastolic and mean CBV (51 ± 13 to 38 ± 13 mmHg) fell during presyncope (all P ≤ 0.04). Both Ci and Pi increased during presyncope (128 ± 97 and 60 ± 41%, respectively; all P ≤ 0.049) and were positively correlated (R2 = 0.79, P < 0.01). Increased Ci contributed to changes in mean CBV (P < 0.01) but decreased CVR did not (P = 0.28). CONCLUSIONS: These data provide evidence that Ci increases during presyncope in patients with VVS and is likely involved in the maintenance of systolic CBV during a fall in diastolic CBV. However, this regulation is not sufficient to preserve CBV in the presence of such extreme and progressive reductions in ABP.


Assuntos
Circulação Cerebrovascular , Síncope Vasovagal , Teste da Mesa Inclinada , Humanos , Síncope Vasovagal/fisiopatologia , Síncope Vasovagal/diagnóstico , Feminino , Adulto , Masculino , Circulação Cerebrovascular/fisiologia , Teste da Mesa Inclinada/métodos , Pessoa de Meia-Idade , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Resistência Vascular/fisiologia , Adulto Jovem , Artéria Cerebral Média/fisiopatologia , Artéria Cerebral Média/diagnóstico por imagem
2.
J Appl Physiol (1985) ; 135(4): 717-725, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37560766

RESUMO

The aim of the current study was to establish the interplay between blood flow patterns within a large cerebral artery and a downstream microvascular segment under conditions of transiently reduced mean arterial pressure (MAP). We report data from nine young, healthy participants (5 women; 26 ± 4 yr) acquired during a 15-s bout of sudden-onset lower body negative pressure (LBNP; -80 mmHg). Simultaneous changes in microvascular cerebral blood flow (CBF) and middle cerebral artery blood velocity (MCAvmean) were captured using diffuse correlation spectroscopy (DCS) and transcranial Doppler ultrasound (TCD), respectively. Brachial blood pressure (finger photoplethysmography) and TCD waveforms were extracted at baseline and during the nadir blood pressure (BP) response to LBNP and analyzed using a modified Windkessel model to calculate indices of cerebrovascular resistance (Ri) and compliance (Ci). Compared with baseline, rapid-onset LBNP decreased MAP by 22 ± 16% and Ri by 14 ± 10% (both P ≤ 0.03). Ci increased (322 ± 298%; P < 0.01) but MCAvmean (-8 ± 16%; P = 0.09) and CBF (-2 ± 3%; P = 0.29) were preserved. The results provide evidence that changes in both vascular resistance and compliance preserve CBF, as indexed by no significant changes in MCAvmean or DCS microvascular flow, during transient hypotension.NEW & NOTEWORTHY To characterize the relationship between cerebrovascular patterns within the large middle cerebral artery (MCA) and a downstream microvascular segment, we used a novel combination of transcranial Doppler ultrasound of the MCA and optical monitoring of a downstream microvascular segment, respectively, under conditions of transiently reduced mean arterial pressure (i.e., lower body negative pressure, -80 mmHg). A rapid increase in vessel compliance accompanied the maintenance of MCA blood velocity and downstream microvascular flow.


Assuntos
Circulação Cerebrovascular , Hipotensão , Humanos , Feminino , Circulação Cerebrovascular/fisiologia , Hemodinâmica , Pressão Sanguínea/fisiologia , Artéria Cerebral Média , Ultrassonografia Doppler Transcraniana , Velocidade do Fluxo Sanguíneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...