Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39026809

RESUMO

Chromatin immunoprecipitation (ChIP-seq) is the most common approach to observe global binding of proteins to DNA in vivo. The occupancy of transcription factors (TFs) from ChIP-seq agrees well with an alternative method, chromatin endogenous cleavage (ChEC-seq2). However, ChIP-seq and ChEC-seq2 reveal strikingly different patterns of enrichment of yeast RNA polymerase II. We hypothesized that this reflects distinct populations of RNAPII, some of which are captured by ChIP-seq and some of which are captured by ChEC-seq2. RNAPII association with enhancers and promoters - predicted from biochemical studies - is detected well by ChEC-seq2 but not by ChIP-seq. Enhancer/promoter bound RNAPII correlates with transcription levels and matches predicted occupancy based on published rates of enhancer recruitment, preinitiation assembly, initiation, elongation and termination. The occupancy from ChEC-seq2 allowed us to develop a stochastic model for global kinetics of RNAPII transcription which captured both the ChEC-seq2 data and changes upon chemical-genetic perturbations to transcription. Finally, RNAPII ChEC-seq2 and kinetic modeling suggests that a mutation in the Gcn4 transcription factor that blocks interaction with the NPC destabilizes promoter-associated RNAPII without altering its recruitment to the enhancer.

2.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38737721

RESUMO

In brain regions featuring ongoing plasticity, the task of quickly encoding new information without overwriting old memories presents a significant challenge. In the rodent olfactory bulb, which is renowned for substantial structural plasticity driven by adult neurogenesis and persistent turnover of dendritic spines, we show that such plasticity is vital to overcoming this flexibility-stability dilemma. To do so, we develop a computational model for structural plasticity in the olfactory bulb and show that the maturation of adult-born neurons facilitates the abilities to learn quickly and forget slowly. Particularly important to achieve this goal are the transient enhancement of the plasticity, excitability, and susceptibility to apoptosis that characterizes young neurons. The model captures many experimental observations and makes a number of testable predictions. Overall, it identifies memory consolidation as an important role of adult neurogenesis in olfaction and exemplifies how the brain can maintain stable memories despite ongoing extensive plasticity.

3.
Eur J Neurosci ; 55(2): 354-376, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894022

RESUMO

Recently, a new type of Caenorhabditis elegans associative learning was reported, where nematodes learn to reach a target arm in an empty T-maze, after they have successfully located reward (food) in the same side arm of a similar, baited, training maze. Here, we present a simplified mathematical model of C. elegans chemosensory and locomotive circuitry that replicates C. elegans navigation in a T-maze and predicts the underlying mechanisms generating maze learning. Based on known neural circuitry, the model circuit responds to food-released chemical cues by modulating motor neuron activity that drives simulated locomotion. We show that, through modulation of interneuron activity, such a circuit can mediate maze learning by acquiring a turning bias, even after a single training session. Simulated nematode maze navigation during training conditions in food-baited mazes and during testing conditions in empty mazes is validated by comparing simulated behaviour with new experimental video data, extracted through the implementation of a custom-made maze tracking algorithm. Our work provides a mathematical framework for investigating the neural mechanisms underlying this novel learning behaviour in C. elegans. Model results predict neuronal components involved in maze and spatial learning and identify target neurons and potential neural mechanisms for future experimental investigations into this learning behaviour.


Assuntos
Caenorhabditis elegans , Locomoção , Animais , Caenorhabditis elegans/fisiologia , Locomoção/fisiologia , Aprendizagem em Labirinto , Neurônios Motores , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...