Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 2(5): e1501639, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386528

RESUMO

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Ecossistema , Florestas , Biodiversidade , Biomassa , Conservação dos Recursos Naturais , Fazendas , Geografia , América Latina , Clima Tropical
2.
Nature ; 530(7589): 211-4, 2016 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840632

RESUMO

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.


Assuntos
Biomassa , Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , Carbono/metabolismo , Ciclo do Carbono , Sequestro de Carbono , Ecologia , Umidade , América Latina , Chuva , Fatores de Tempo , Árvores/metabolismo
3.
Glob Chang Biol ; 20(10): 3177-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24817483

RESUMO

Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.


Assuntos
Biomassa , Monitoramento Ambiental/métodos , Modelos Teóricos , Árvores/fisiologia , Clima Tropical , Carbono , Modelos Biológicos , Análise de Regressão , Gravidade Específica , Madeira/química
4.
Arch Intern Med ; 166(1): 95-100, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16401816

RESUMO

BACKGROUND: Although bone specimens were established 25 years ago as the gold standard for etiologic diagnosis of chronic osteomyelitis, recent studies suggest that nonbone specimens are as accurate as bone to identify the causative agent. We examined concordance rates between cultures from nonbone and bone specimens in 100 patients. METHODS: Prospective study conducted at Hospital Universitario San Vicente de Paul, a 750-bed university-based hospital located in Medellín, Colombia. We included patients with chronic osteomyelitis who had been free of antibiotic therapy for at least 48 hours, excluding those with diabetic foot and decubitus ulcers. At least 1 nonbone and 1 bone specimen were taken from each individual and subjected to complete microbiologic analysis. RESULTS: Bone cultures allowed agent identification in 94% of cases, including anaerobic bacteria in 14%. Cultures of nonbone and bone specimens gave identical results in 30% of patients, with slightly better concordance in chronic osteomyelitis caused by Staphylococcus aureus (42%) than by all other bacterial species (22%). However, statistical concordance determined by the Cohen kappa statistic was less than 0 (-0.0092+/-0.0324), indicating that the observed concordance was no better than that expected by chance alone (P>.99). CONCLUSIONS: Appropriate diagnosis and therapy of chronic osteomyelitis require microbiologic cultures of the infected bone. Nonbone specimens are not valid for this purpose.


Assuntos
Osso e Ossos/microbiologia , Osteomielite/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Biópsia , Osso e Ossos/patologia , Osso e Ossos/cirurgia , Criança , Doença Crônica , Contagem de Colônia Microbiana , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Osteomielite/patologia , Osteomielite/cirurgia , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA