Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 3(20)2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29475849

RESUMO

The key factors underlying the development of allergic diseases-the propensity for a minority of individuals to develop dysfunctional responses to harmless environmental molecules-remain undefined. We report a pathway of immune counter-regulation that suppresses the development of aeroallergy and shrimp-induced anaphylaxis. In mice, signaling through epithelially expressed dectin-1 suppresses the development of type 2 immune responses through inhibition of interleukin-33 (IL-33) secretion and the subsequent recruitment of IL-13-producing innate lymphoid cells. Although this homeostatic pathway is functional in respiratory epithelial cells from healthy humans, it is dramatically impaired in epithelial cells from asthmatic and chronic rhinosinusitis patients, resulting in elevated IL-33 production. Moreover, we identify an association between a single-nucleotide polymorphism (SNP) in the dectin-1 gene loci and reduced pulmonary function in two cohorts of asthmatics. This intronic SNP is a predicted eQTL (expression quantitative trait locus) that is associated with reduced dectin-1 expression in human tissue. We identify invertebrate tropomyosin, a ubiquitous arthropod-derived molecule, as an immunobiologically relevant dectin-1 ligand that normally serves to restrain IL-33 release and dampen type 2 immunity in healthy individuals. However, invertebrate tropomyosin presented in the context of impaired dectin-1 function, as observed in allergic individuals, leads to unrestrained IL-33 secretion and skewing of immune responses toward type 2 immunity. Collectively, we uncover a previously unrecognized mechanism of protection against allergy to a conserved recognition element omnipresent in our environment.


Assuntos
Asma/imunologia , Suscetibilidade a Doenças , Lectinas Tipo C/imunologia , Tropomiosina/imunologia , Animais , Asma/induzido quimicamente , Células Cultivadas , Feminino , Humanos , Lectinas Tipo C/genética , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética
2.
Cell Signal ; 43: 47-54, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242170

RESUMO

BACKGROUND: Bronchial fibroblasts are the main structural cells responsible for extracellular matrix production and turnover in lung tissue. They play a key role in airway remodelling in asthma through different cytokines including interleukin (IL-6). OBJECTIVE: To decipher IL-6 signalling in bronchial fibroblasts obtained from severe eosinophilic asthmatics compared to mild asthmatics and healthy controls. METHODS: Human bronchial fibroblasts were isolated from bronchial biopsies of mild and severe eosinophilic asthmatics and non-atopic healthy controls. IL-6 was assessed by qRT-PCR and ELISA. Phosphorylated STAT3, SHP2 and p38/MAPK were evaluated by Western blot. Chemical inhibitors for SHP2 and p38 were used. Fibroblast proliferation was evaluated by BrdU incorporation test. RESULTS: IL-6 release was significantly increased in fibroblasts from mild and severe asthmatics compared to healthy controls. Fibroblasts from severe asthmatics showed a reduced STAT3 activation compared to mild asthmatics and healthy controls. Constitutive activation of phosphatase SHP2 was found to negatively regulate IL-6 induced STAT3 phosphorylation in fibroblasts from severe asthmatics. This effect was accompanied by a decrease in fibroblast proliferation rate due to the activated p38/mitogen-activated protein kinase. SHP2 and p38/MAPK specific inhibitors (PHPS1 and SB212190) significantly induce a restoration of STAT3 phosphorylation, IL-6 target gene expression and cell proliferation. CONCLUSION: These data show dysregulated IL-6 signalling in bronchial fibroblasts derived from severe eosinophilic asthmatic subjects involving the protein tyrosine phosphatase SHP2 and p38MAPK. Collectively, our data provides new insights into the mechanisms by which bronchial fibroblasts regulate airway remodelling in severe asthma.


Assuntos
Asma/metabolismo , Asma/patologia , Interleucina-6/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Adulto , Asma/enzimologia , Proliferação de Células , Ativação Enzimática , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Modelos Biológicos , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Biochem Biophys Res Commun ; 411(2): 247-52, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21723259

RESUMO

Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.


Assuntos
Cardiomiopatias/genética , DNA Mitocondrial/genética , NADH Desidrogenase/genética , Síndrome de Wolfram/genética , Adulto , Sequência de Aminoácidos , Cardiomiopatias/complicações , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Dados de Sequência Molecular , Mutação , Deleção de Sequência , Síndrome de Wolfram/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...