Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13610, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871751

RESUMO

Natural products play a significant role in providing the current demand as antiparasitic agents, which offer an attractive approach for the discovery of novel drugs. The present study aimed to evaluate in vitro the potential impact of seaweed Padina pavonica (P. pavonica) extract in combating Acanthamoeba castellanii (A. castellanii). The phytochemical constituents of the extract were characterized by Gas chromatography-mass spectrometry. Six concentrations of the algal extract were used to evaluate its antiprotozoal activity at various incubation periods. Our results showed that the extract has significant inhibition against trophozoites and cysts viability, with complete inhibition at the high concentrations. The IC50 of P. pavonica extract was 4.56 and 4.89 µg/mL for trophozoites and cysts, respectively, at 24 h. Morphological alterations of A. castellanii trophozoites/cysts treated with the extract were assessed using inverted and scanning electron microscopes and showed severe damage features upon treatment with the extract at different concentrations. Molecular Docking of extracted compounds against Acanthamoeba cytochrome P450 monooxygenase (AcCYP51) was performed using Autodock vina1.5.6. A pharmacokinetic study using SwissADME was also conducted to investigate the potentiality of the identified bioactive compounds from Padina extract to be orally active drug candidates. In conclusion, this study highlights the in vitro amoebicidal activity of P. pavonica extract against A. castellanii adults and cysts and suggests potential AcCYP51 inhibition.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Simulação de Acoplamento Molecular , Extratos Vegetais , Acanthamoeba castellanii/efeitos dos fármacos , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Trofozoítos/efeitos dos fármacos , Animais , Humanos
2.
Future Virol ; 18(5): 295-308, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38052000

RESUMO

Aim: We aimed to investigate the potential inhibitory effects of diterpenes on SARS-CoV-2 main protease (Mpro). Materials & methods: We performed a virtual screening of diterpenoids against Mpro using molecular docking, molecular dynamics simulation and absorption, distribution, metabolism and excretion) analysis. Results: Some tested compounds followed Lipinski's rule and showed drug-like properties. Some diterpenoids possessed remarkable binding affinities with SARS-CoV-2 Mpro and drug-like pharmacokinetic properties. Three derivatives exhibited structural deviations lower than 1 Å. Conclusion: The findings of the study suggest that some of the diterpenes could be candidates as potential inhibitors for Mpro of SARS-CoV-2.

3.
Exp Parasitol ; 254: 108631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820894

RESUMO

Schistosomiasis is the second most prevailing parasitic disease worldwide. Although praziquantel is considered an effective drug in the treatment against schistosomiasis to some extent, there is an emerging drug resistance that widely recorded. Therefore, there is an urgent need to develop effective and safe anti-schistosomal drugs. In this study, Cornulaca monacantha (C. monacantha), a sub-saharan plant, was extracted using aqueous ethanol and characterized by High-Performance Liquid Chromatography (HPLC). Major constituents of the extract are belonging to flavonoids, tannins and phenolic glycosides. Worms' viability and surface morphology of Schistosoma mansoni (S. mansoni) adult worms treated with the extract were assessed using in vitro viability assay, Scanning Electron Microscopy (SEM), and histological examination. The extract (80-350 µg/ml) reduced viability percentage of worms by 40-60% and caused degeneration of both oral and ventral suckers, tegumental, sub-tegumental and muscular damage. Molecular docking approach was utilized to assess the binding affinities of the extracted compounds with S. mansoni alpha-carbonic anhydrase (SmCA), an essential tegument protein. Pharmacokinetic analysis using SwissADME showed that 7 compounds have high drug similarity. This study confirms the in vitro schistomicidal activity of C. monacantha extract against S. mansoni adult worms and suggests potential SmCA inhibition.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Simulação de Acoplamento Molecular , Schistosoma mansoni , Praziquantel/farmacologia , Microscopia Eletrônica de Varredura , Esquistossomose mansoni/tratamento farmacológico
4.
Comb Chem High Throughput Screen ; 26(12): 2124-2148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650620

RESUMO

Toll-like receptors (TLRs) control both innate and adaptive immunity with a wide expression on renal epithelial cells and leukocytes. Activation of TLRs results in the production of cytokines, chemokines and interferons along with activation of the transcription factor NF-κB, resulting in inflammatory perturbations. TLR4 signaling pathway is the most extensively studied of TLRs. TLR4 is expressed on renal microvascular endothelial and tubular epithelial cells. So, targeting TLR4 modulation could be a therapeutic approach to attenuate kidney diseases that are underlined by inflammatory cascade. Medicinal plants with anti-inflammatory activities display valuable effects and are employed as alternative sources to alleviate renal disease linked with inflammation. Flavonoids and other phytochemicals derived from traditional medicines possess promising pharmacological activities owing to their relatively cheap and high safety profile. Our review focuses on the potent anti-inflammatory activities of twenty phytochemicals to verify if their potential promising renoprotective effects are related to suppression of TLR4 signaling in different renal diseases, including sepsis-induced acute kidney injury, renal fibrosis, chemotherapy-induced nephrotoxicity, diabetic nephropathy and renal ischemia/reperfusion injury. Additionally, molecular docking simulations were employed to explore the potential binding affinity of these phytochemicals to TLR4 as a strategy to attenuate renal diseases associated with activated TLR4 signaling.


Assuntos
Nefropatias Diabéticas , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Simulação de Acoplamento Molecular , Rim/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Sci Rep ; 12(1): 19239, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357560

RESUMO

The endophytic fungus Paecilomyces sp. (AUMC 15510) was isolated from healthy stem samples of the Egyptian medicinal plant Cornulaca monacantha. We used GC-MS and HPLC analysis to identify the bioactive constituents of ethyl acetate crude extract of Paecilomyces sp. (PsEAE). Six human microbial pathogens have been selected to evaluate the antimicrobial activity of PsEAE. Our data showed that the extract has significant antimicrobial activity against all tested pathogens. However, the best inhibitory effect was observed against Bacillus subtilis ATCC 6633 and Pseudomonas aeruginosa ATCC 90274 with a minimum inhibitory concentration (MIC) of 3.9 µg/ml and minimum bactericidal concentration (MBC) of 15.6 µg/ml, for both pathogens. Also, PsEAE exerts a significant inhibition on the biofilm formation of the previously mentioned pathogenic strains. In addition, we evaluated the wound healing efficiency of PsEAE on earthworms (Lumbricus castaneus) as a feasible and plausible model that mimics human skin. Interestingly, PsEAE exhibited a promising wound healing activity and enhanced wound closure. In conclusion, Paecilomyces sp. (AUMC 15510) could be a sustainable source of antimicrobial agents and a potential therapeutic target for wound management.


Assuntos
Anti-Infecciosos , Oligoquetos , Paecilomyces , Animais , Humanos , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Cicatrização , Biofilmes
6.
Life Sci ; 259: 118173, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750437

RESUMO

The prevalence of various hepatic diseases increases dramatically worldwide and regarded as a serious health problem. Sirtuins are one of the main strategic controllers of different cellular processes, including cell cycle, mitochondrial biogenesis, insulin secretion, redox balance, inflammation, and apoptosis. SIRT1 is the most prominent and broadly studied member of sirtuins that implicated in health status and longevity. Therefore, targeting the SIRT1 signaling pathways may be a reasonable therapeutic approach to treat different diseases, including hepatic disorders. Flavonoids are polyphenolic compounds widely present in different plants and possess beneficial effects against diverse diseases. In this review, we focused on the flavonoids, (-)-epicatechin, ampelopsin, baicalin, delphinidin, fisetin, epigallocatechin-3-gallate, luteolin, pinocembrin, quercetin, silibinin, trans-chalcone and xanthohumol, to verify whether their potential promising hepatoprotective effects are related to activation of SIRT1. Additionally, molecular modeling simulations were applied to explore the potential binding mode of these flavonoids to SIRT1. The complied information and molecular docking simulations suggested that SIRT1 signaling is involved in the beneficial pharmacologic activities of flavonoids in different hepatic diseases.


Assuntos
Flavonoides/uso terapêutico , Hepatopatias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Animais , Flavonoides/farmacologia , Humanos , Hepatopatias/fisiopatologia , Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...