Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(5): 2176-2186, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38625027

RESUMO

The blood-brain barrier (BBB) is instrumental in clearing toxic metabolites from the brain, such as amyloid-ß (Aß) peptides, and in delivering essential nutrients to the brain, like insulin. In Alzheimer's disease (AD) brain, increased Aß levels are paralleled by decreased insulin levels, which are accompanied by insulin signaling deficits at the BBB. Thus, we investigated the impact of insulin-like growth factor and insulin receptor (IGF1R and IR) signaling on Aß and insulin trafficking at the BBB. Following intravenous infusion of an IGF1R/IR kinase inhibitor (AG1024) in wild-type mice, the BBB trafficking of 125I radiolabeled Aß peptides and insulin was assessed by dynamic SPECT/CT imaging. The brain efflux of [125I]iodo-Aß42 decreased upon AG1024 treatment. Additionally, the brain influx of [125I]iodoinsulin, [125I]iodo-Aß42, [125I]iodo-Aß40, and [125I]iodo-BSA (BBB integrity marker) was decreased, increased, unchanged, and unchanged, respectively, upon AG1024 treatment. Subsequent mechanistic studies were performed using an in vitro BBB cell model. The cell uptake of [125I]iodoinsulin, [125I]iodo-Aß42, and [125I]iodo-Aß40 was decreased, increased, and unchanged, respectively, upon AG1024 treatment. Further, AG1024 reduced the phosphorylation of insulin signaling kinases (Akt and Erk) and the membrane expression of Aß and insulin trafficking receptors (LRP-1 and IR-ß). These findings reveal that insulin signaling differentially regulates the BBB trafficking of Aß peptides and insulin. Moreover, deficits in IGF1R and IR signaling, as observed in the brains of type II diabetes and AD patients, are expected to increase Aß accumulation while decreasing insulin delivery to the brain, which has been linked to the progression of cognitive decline in AD.


Assuntos
Peptídeos beta-Amiloides , Barreira Hematoencefálica , Insulina , Transdução de Sinais , Animais , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Insulina/metabolismo , Radioisótopos do Iodo , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tirfostinas/farmacologia
2.
Mol Pharm ; 18(3): 754-771, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464914

RESUMO

At the stroke of the New Year 2020, COVID-19, a zoonotic disease that would turn into a global pandemic, was identified in the Chinese city of Wuhan. Although unique in its transmission and virulence, COVID-19 is similar to zoonotic diseases, including other SARS variants (e.g., SARS-CoV) and MERS, in exhibiting severe flu-like symptoms and acute respiratory distress. Even at the molecular level, many parallels have been identified between SARS and COVID-19 so much so that the COVID-19 virus has been named SARS-CoV-2. These similarities have provided several opportunities to treat COVID-19 patients using clinical approaches that were proven to be effective against SARS. Importantly, the identification of similarities in how SARS-CoV and SARS-CoV-2 access the host, replicate, and trigger life-threatening pathological conditions have revealed opportunities to repurpose drugs that were proven to be effective against SARS. In this article, we first provided an overview of COVID-19 etiology vis-à-vis other zoonotic diseases, particularly SARS and MERS. Then, we summarized the characteristics of droplets/aerosols emitted by COVID-19 patients and how they aid in the transmission of the virus among people. Moreover, we discussed the molecular mechanisms that enable SARS-CoV-2 to access the host and become more contagious than other betacoronaviruses such as SARS-CoV. Further, we outlined various approaches that are currently being employed to diagnose and symptomatically treat COVID-19 in the clinic. Finally, we reviewed various approaches and technologies employed to develop vaccines against COVID-19 and summarized the attempts to repurpose various classes of drugs and novel therapeutic approaches.


Assuntos
COVID-19/transmissão , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...