Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; : e0028424, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324805

RESUMO

Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.

2.
Front Cell Infect Microbiol ; 14: 1284701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585652

RESUMO

Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.


Assuntos
Parasitos , Animais , Bactérias/genética , Vacúolos , Células Eucarióticas
3.
Infect Immun ; 89(12): e0013521, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34491791

RESUMO

Coxiella burnetii, the causative agent of query (Q) fever in humans, is an obligate intracellular bacterium. C. burnetii can naturally infect a broad range of host organisms (e.g., mammals and arthropods) and cell types. This amphotropic nature of C. burnetii, in combination with its ability to utilize both glycolytic and gluconeogenic carbon sources, suggests that the pathogen relies on metabolic plasticity to replicate in nutritionally diverse intracellular environments. To test the significance of metabolic plasticity in C. burnetii host cell colonization, C. burnetii intracellular replication in seven distinct cell lines was compared between a metabolically competent parental strain and a mutant, CbΔpckA, unable to undergo gluconeogenesis. Both the parental strain and CbΔpckA mutant exhibited host cell-dependent infection phenotypes, which were influenced by alterations to host glycolytic or gluconeogenic substrate availability. Because the nutritional environment directly impacts host cell physiology, our analysis was extended to investigate the response of C. burnetii replication in mammalian host cells cultivated in a novel physiological medium based on the nutrient composition of mammalian interstitial fluid, interstitial fluid-modeled medium (IFmM). An infection model based on IFmM resulted in exacerbation of a replication defect exhibited by the CbΔpckA mutant in specific cell lines. The CbΔpckA mutant was also attenuated during infection of an animal host. Overall, the study underscores that gluconeogenic capacity aids C. burnetii amphotropism and that the amphotropic nature of C. burnetii should be considered when resolving virulence mechanisms in this pathogen.


Assuntos
Coxiella burnetii/fisiologia , Metabolismo Energético , Interações Hospedeiro-Patógeno , Febre Q/metabolismo , Febre Q/microbiologia , Suscetibilidade a Doenças , Gluconeogênese , Glicólise , Humanos , Virulência/genética , Fatores de Virulência/genética
4.
Pathog Dis ; 79(6)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34259815

RESUMO

Coxiella burnetii is a bacterial obligate intracellular parasite and the etiological agent of query (Q) fever. While the C. burnetii genome has been reduced to ∼2 Mb as a likely consequence of genome streamlining in response to parasitism, enzymes for a nearly complete central metabolic machinery are encoded by the genome. However, lack of a canonical hexokinase for phosphorylation of glucose and an apparent absence of the oxidative branch of the pentose phosphate pathway, a major mechanism for regeneration of the reducing equivalent nicotinamide adenine dinucleotide phosphate (NADPH), have been noted as potential metabolic limitations of C. burnetii. By complementing C. burnetii with the gene zwf encoding the glucose-6-phosphate-consuming and NADPH-producing enzyme glucose-6-phosphate dehydrogenase (G6PD), we demonstrate a severe metabolic fitness defect for C. burnetii under conditions of glucose limitation. Supplementation of the medium with the gluconeogenic carbon source glutamate did not rescue the growth defect of bacteria complemented with zwf. Absence of G6PD in C. burnetii therefore likely relates to the negative effect of its activity under conditions of glucose limitation. Coxiella burnetii central metabolism with emphasis on glucose, NAD+, NADP+ and NADPH is discussed in a broader perspective, including comparisons with other bacterial obligate intracellular parasites.


Assuntos
Coxiella burnetii/enzimologia , Coxiella burnetii/fisiologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , NADP/metabolismo , Febre Q/microbiologia , Animais , Linhagem Celular , Chlorocebus aethiops , DNA Bacteriano , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Redes e Vias Metabólicas , Aptidão Física , Células Vero
5.
mSphere ; 5(4)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699121

RESUMO

Coxiella burnetii, the causative agent of Query (Q) fever in humans, is a highly infectious obligate intracellular bacterium. Following uptake into a host cell, C. burnetii replicates within a phagolysosome-derived compartment referred to as the Coxiella-containing vacuole (CCV). During infection, C. burnetii exhibits tropism for tissues related to iron storage and recycling (e.g., the liver and splenic red pulp), suggesting that pathogen physiology is linked to host iron metabolism. Iron has been described to have a limited role in C. burnetii virulence regulation, despite evidence that C. burnetii-infected host cells increase expression of transferrin receptors, thereby suggesting that active iron acquisition by the bacterium occurs upon infection. Through the use of host cell-free culture, C. burnetii was separated from the host cell in order to directly assess the role of different forms of iron in C. burnetii replication and viability, and therefore virulence. Results indicate that C. burnetii tolerates molecular iron over a broad concentration range (i.e., ∼0.001 to 1 mM) and undergoes gross loss of viability upon iron starvation. C. burnetii protein synthesis and energy metabolism, however, occur nearly uninhibited under iron concentrations not permissive to replication. Despite the apparent absence of genes related to acquisition of host-associated iron-containing proteins, C. burnetii replication is supported by hemoglobin, transferrin, and ferritin, likely due to release of iron from such proteins under acidic conditions. Moreover, chelation of host iron pools inhibited pathogen replication during infection of cultured cells.IMPORTANCE Host organisms restrict the availability of iron to invading pathogens in order to reduce pathogen replication. To counteract the host's response to infection, bacteria can rely on redundant mechanisms to obtain biologically diverse forms of iron during infection. C. burnetii appears specifically dependent on molecular iron for replication and viability and exhibits a response to iron akin to bacteria that colonize iron-rich environments. Physiological adaptation of C. burnetii to the unique acidic and degradative environment of the CCV is consistent with access of this pathogen to molecular iron.


Assuntos
Coxiella burnetii/fisiologia , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Viabilidade Microbiana , Coxiella burnetii/patogenicidade , Células HeLa , Humanos , Fagossomos/microbiologia , Febre Q/microbiologia
6.
Gut Microbes ; 11(4): 721-734, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31931655

RESUMO

The approximately 1011 viruses and microbial cells per gram of fecal matter (dry weight) in the large intestine are important to human health. The responses of three common gut bacteria species, and one opportunistic pathogen, to 117 commonly consumed foods, chemical additives, and plant extracts were tested. Many compounds, including Stevia rebaudiana and bee propolis extracts, exhibited species-specific growth inhibition by prophage induction. Overall, these results show that various foods may change the abundances of gut bacteria by modulating temperate phage and suggests a novel path for landscaping the human gut microbiome.


Assuntos
Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Alimentos , Microbioma Gastrointestinal , Extratos Vegetais/farmacologia , Ativação Viral , Bactérias/efeitos dos fármacos , Dieta , Fezes/microbiologia , Aditivos Alimentares/farmacologia , Humanos , Metagenoma
7.
Curr Protoc Microbiol ; 50(1): e52, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29927105

RESUMO

Coxiella burnetii is a highly infectious obligate intracellular bacterium and the etiological agent of the zoonosis Query (Q) fever. This Gram-negative gamma-proteobacterium has adapted to replicate within a specialized compartment in mammalian phagocytic cells, known as the Coxiella-containing vacuole (CCV). Knowledge of critical characteristics of the CCV microenvironment (e.g., luminal pH), analysis of the C. burnetii genome sequence, and strategic metabolic profiling have provided the basis for determining the physicochemical and nutritional conditions necessary to support axenic replication of C. burnetii. In this unit, the media currently utilized for axenic culture of C. burnetii are described, with emphasis on application. To aid in experimental reproducibility and interpretation of results, considerations and limitations are discussed. Lastly, expected results for C. burnetii axenic growth under control conditions are provided as a reference. © 2018 by John Wiley & Sons, Inc.


Assuntos
Cultura Axênica/métodos , Coxiella burnetii/crescimento & desenvolvimento , Febre Q/microbiologia , Animais , Cultura Axênica/instrumentação , Coxiella burnetii/genética , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-28620582

RESUMO

Bacterial obligate intracellular parasites are clinically significant animal and human pathogens. Central to the biology of these organisms is their level of adaptation to intracellular replication niches associated with physicochemical and nutritional constraints. While most bacterial pathogens can adapt to a wide range of environments, severe niche restriction-an inability to thrive in diverse environments-is a hallmark of bacterial obligate intracellular parasites. Herein the physicochemical and nutritional factors underlying the physiological basis for niche restriction in the zoonotic bacterial obligate intracellular parasite and Q fever agent Coxiella burnetii are characterized. Additionally, these factors are reviewed in the context of C. burnetii evolution and continued (patho) adaptation. C. burnetii replication was strictly dependent on a combination of moderately acidic pH, reduced oxygen tension, and presence of carbon dioxide. Of macronutrients, amino acids alone support replication under physicochemically favorable conditions. In addition to utilizing gluconeogenic substrates for replication, C. burnetii can also utilize glucose to generate biomass. A mutant with a disruption in the gene pckA, encoding phosphoenolpyruvate carboxykinase (PEPCK), the first committed step in gluconeogenesis, could be complemented chemically by the addition of glucose. Disruption of pckA resulted in a moderate glucose-dependent growth defect during infection of cultured host cells. Although, C. burnetii has the theoretical capacity to synthesize essential core metabolites via glycolysis and gluconeogenesis, amino acid auxotrophy essentially restricts C. burnetii replication to a niche providing ample access to amino acids. Overall, the described combination of physiochemical and nutritional growth requirements are strong indicators for why C. burnetii favors an acidified phagolysosome-derived vacuole in respiring tissue for replication.


Assuntos
Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/metabolismo , Necessidades Nutricionais , Aminoácidos/metabolismo , Animais , Cultura Axênica , Biomassa , Dióxido de Carbono , Chlorocebus aethiops , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Genes Bacterianos/genética , Gluconeogênese , Glucose/metabolismo , Glicólise , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio , Mutação , Oxigênio , Fagossomos/microbiologia , Febre Q/microbiologia , Células Vero
9.
Nat Microbiol ; 1(6): 16042, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27572833

RESUMO

Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.


Assuntos
Antozoários/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biomassa , Recifes de Corais , Alga Marinha/crescimento & desenvolvimento , Alga Marinha/metabolismo , Animais , Antozoários/metabolismo , Bactérias/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Ciclo do Carbono , Eutrofização , Glicólise , Via de Pentose Fosfato
10.
J Vis Exp ; (100): e52854, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26132888

RESUMO

Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.


Assuntos
Bacteriófagos/genética , Escherichia coli/virologia , Genômica/métodos , Proteínas Virais/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Viral , Proteínas Virais/biossíntese
12.
ISME J ; 9(4): 1024-38, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25514533

RESUMO

There is a poor understanding of how the physiology of polymicrobial communities in cystic fibrosis (CF) lungs contributes to pulmonary exacerbations and lung function decline. In this study, a microbial culture system based on the principles of the Winogradsky column (WinCF system) was developed to study the physiology of CF microbes. The system used glass capillary tubes filled with artificial sputum medium to mimic a clogged airway bronchiole. Chemical indicators were added to observe microbial physiology within the tubes. Characterization of sputum samples from seven patients showed variation in pH, respiration, biofilm formation and gas production, indicating that the physiology of CF microbial communities varied among patients. Incubation of homogenized tissues from an explant CF lung mirrored responses of a Pseudomonas aeruginosa pure culture, supporting evidence that end-stage lungs are dominated by this pathogen. Longitudinal sputum samples taken through two exacerbation events in a single patient showed that a two-unit drop in pH and a 30% increase in gas production occurred in the tubes prior to exacerbation, which was reversed with antibiotic treatment. Microbial community profiles obtained through amplification and sequencing of the 16S rRNA gene showed that fermentative anaerobes became more abundant during exacerbation and were then reduced during treatment where P. aeruginosa became the dominant bacterium. Results from the WinCF experiments support the model where two functionally different CF microbial communities exist, the persistent Climax Community and the acute Attack Community. Fermentative anaerobes are hypothesized to be the core members of the Attack Community and production of acidic and gaseous products from fermentation may drive developing exacerbations. Treatment targeting the Attack Community may better resolve exacerbations and resulting lung damage.


Assuntos
Bactérias Anaeróbias/metabolismo , Fibrose Cística/microbiologia , Fermentação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Técnicas Bacteriológicas , Humanos , Pulmão/microbiologia , Pseudomonas aeruginosa/genética , Escarro/microbiologia
13.
PeerJ ; 2: e520, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177534

RESUMO

Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines.

14.
Nat Commun ; 5: 4498, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25058116

RESUMO

Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the majority of published human faecal metagenomes, which we refer to as crAssphage. Its ~97 kbp genome is six times more abundant in publicly available metagenomes than all other known phages together; it comprises up to 90% and 22% of all reads in virus-like particle (VLP)-derived metagenomes and total community metagenomes, respectively; and it totals 1.68% of all human faecal metagenomic sequencing reads in the public databases. The majority of crAssphage-encoded proteins match no known sequences in the database, which is why it was not detected before. Using a new co-occurrence profiling approach, we predict a Bacteroides host for this phage, consistent with Bacteroides-related protein homologues and a unique carbohydrate-binding domain encoded in the phage genome.


Assuntos
Bacteriófagos/isolamento & purificação , Fezes/virologia , Metagenoma , Bacteriófagos/genética , Bacteroides/virologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fezes/microbiologia , Feminino , Humanos , Dados de Sequência Molecular , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...