Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(10): 1457-1474, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076765

RESUMO

The cooperative role of vital components of the antioxidative defense pathway in addition to redox couples was studied in a growth-phase dependent manner at 20, 30, and 40 days after subculturing (DAS) in five different euryhaline microalgal strains (EMS) Scenedesmus MKB (B-S), Spirulina subsalsa (B-6), Anabaena sp. (B-7), Chlorella sp. (B-8), and Chlorosarcinopsis eremi (B-18) collected from waterlogged areas of Punjab, India and in two freshwater microalgal strains (FMS). EMS surpasses to maintain a high redox couple's ratio ascorbic acid/dehydroascorbate (AsA/DHA), and reduced glutathione/oxidized glutathione (GSH/GSSG) through a close-knit pattern of antioxidative enzymes including high specific activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and less specific activity of glutathione peroxidase (GPX). While FMS struggled for the same irrespective of near similar total glutathione and higher specific activity of GPX might be answerable for the lesser redox ratio than EMS. However, high specific activity of catalase (CAT) might be sought to compensate for the less increase of APX in FMS. The fact significantly less H2O2, and malondialdehyde (MDA) with DAS in EMS than in FMS and higher redox ratios exquisitely elevate their tolerance ability making EMS a captivating prospect for cultivation in waterlogged areas. Additionally, their abundance of potent antioxidants further highlights the potential of EMS as an excellent source of these beneficial compounds.

2.
Antioxidants (Basel) ; 12(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37507990

RESUMO

Honey bee products comprise various compounds, including honey, propolis, royal jelly, bee pollen, bee wax and bee venom, which have long been recognized for their pharmacological and health-promoting benefits. Scientists have discovered that periodontal disorders stem from dental biofilm, an inflammatory response to bacterial overgrowth produced by dysbiosis in the oral microbiome. The bee products have been investigated for their role in prevention of oral diseases, which are attributed to a myriad of biologically active compounds including flavonoids (pinocembrin, catechin, caffeic acid phenethyl ester (CAPE) and galangin), phenolic acids (hydroxybenzoic acid, hydroxycinnamic acid, p-coumaric, ellagic, caffeic and ferulic acids) and terpenoids. This review aims to update the current understanding of role of selected bee products, namely, honey, propolis and royal jelly, in preventing oral diseases as well as their potential biological activities and mechanism of action in relation to oral health have been discussed. Furthermore, the safety of incorporation of bee products is also critically discussed. To summarize, bee products could potentially serve as a therapy option for people suffering from a variety of oral disorders.

3.
Biol Trace Elem Res ; 201(10): 4961-4971, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36626030

RESUMO

Bitter gourd (Momordica charantia L.), belonging to family Cucurbitaceae, is a good source of carbohydrates, proteins, vitamins, minerals, and bioactive compounds. In the present study, fruits (and its parts-epicarp, mesocarp, endocarp, seed, and whole fruit) of 56 accessions and 4 cultivars of Momordica spp. were assayed and compared for macro-minerals magnesium (Mg), potassium (K), sodium (Na), phosphorus (P), and calcium (Ca), and microminerals iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu). Potassium was the most abundant macro-mineral found in whole fruit ranging from 78.40 to 483.49 mg/100 g dry weight (DW), followed by Mg (13.23-101.70 mg/100 g DW) in epicarp, P (32.22-98.24 mg/100 g DW) in endocarp, Ca (23.41-71.39 mg/100 g DW) in whole fruit, and Na (6.09-18.56 mg/100 g DW) in epicarp. The concentration of microminerals was recorded higher in seeds compared to other fruit parts. Levels of Fe were higher (0.76-6.14 mg/100 g DW), followed by Zn (0.87-2.64 mg/100 g DW), Cu (137.68-525.45 µg/100 g DW), and Mn (46.92-179.05 µg/100 g DW). The analysis depicted bitter gourd to be a potential source of both macro-minerals (K and Mg) and microminerals (Fe and Zn). The consumption of bitter gourd could be a health-promoting strategy to meet daily dietary intake requirements of essential minerals for human health.


Assuntos
Momordica charantia , Humanos , Momordica charantia/metabolismo , Frutas/química , Minerais/análise , Manganês/análise , Zinco/metabolismo , Magnésio/análise , Sódio , Potássio/análise
4.
Biol Trace Elem Res ; 201(8): 4156-4166, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36447002

RESUMO

Celery (Apium graveolens L.), a medicinal crop, occupies a significant position in the human diet possessing several essential macro- and microelements. For proper proximate analysis, an experiment was executed by taking 20 celery genotypes. The genotypes were analyzed for macro- and microminerals which include nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), sulfur (S), zinc (Zn), iron (Fe), copper (Cu), and manganese (Mn). Results from analysis revealed that the  amount of N, P, Ca, Na, and S was higher in microgreens, whereas a higher value for K was found in mature leaves. Zn, Cu, and Mn contents were found to be higher in mature leaves, while no significant difference was observed for Fe content in microgreens and mature leaves. The inclusion of celery microgreens in our daily diet would fulfill a significant portion of our daily mineral requirement. This is the first report on mineral comparison between microgreens and mature leaves of celery. It opens a new avenue for further enhancement of minerals via biofortification of this medicinal wonder crop through systematic breeding efforts. On the basis of mineral analysis, three genotypes, namely PAU2, PAU4, and PAU16, were found superior in terms of mineral composition in microgreens and mature leaves of celery. Principal component and cluster analyses divide the genotypes into two different clusters on the basis of variability in mineral composition.


Assuntos
Apium , Humanos , Apium/genética , Melhoramento Vegetal , Minerais , Manganês , Zinco , Cálcio da Dieta , Sódio , Verduras , Folhas de Planta
5.
Biol Trace Elem Res ; 201(5): 2665-2673, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35876947

RESUMO

Celery is an important nutritionally rich crop in the family Apiaceae. It is cultivated worldwide for food as well as for use in pharmaceutics. It is an excellent source of minerals, vitamins, and phytochemicals. Identification of superior genotypes with improved nutritional content is the requirement to develop cultivars for commercial cultivation. For mineral analysis of celery, an experiment was carried out taking 20 diverse genotypes. These genotypes were analysed for macro- and micronutrients which include nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and sodium (Na). The study revealed high content of K (20.3-26.1 mg/g dry weight (DW)) and Zn (0.09-0.14 mg/g DW) in leaves while the stalks were rich in Ca (41.5-51.3 mg/g DW) and Na (5.2-8.0 mg/g DW). High contents of P (5.2-6.8 mg/g DW), Fe (0.41-0.56 mg/g DW), Cu (0.015-0.026 mg/g DW), and Mn (0.020-0.029 mg/g DW) were observed in seeds. Based on the mineral content, three genotypes, viz., PAU2, PAU4, and PAU7, were found to be superior in terms of mineral composition in leaves, stalks, and seeds. Cluster analysis divided the genotypes into two major groups. These genotypes can be used in crosses as they showed great potential for use in biofortification. This study opens newer avenues for future research, encouraging researchers to enhance the product quality and production efficiency of the leaves, stalks, and seeds valuable for human consumption.


Assuntos
Apium , Humanos , Apium/genética , Apium/química , Minerais/análise , Sódio/análise , Verduras/química , Manganês/análise , Folhas de Planta/genética , Folhas de Planta/química , Sementes/genética , Sementes/química , Cálcio da Dieta/análise , Genótipo
6.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012660

RESUMO

High-temperature stress (HT) over crop productivity is an important environmental factor demanding more attention as recent global warming trends are alarming and pose a potential threat to crop production. According to the Sixth IPCC report, future years will have longer warm seasons and frequent heat waves. Thus, the need arises to develop HT-tolerant genotypes that can be used to breed high-yielding crops. Several physiological, biochemical, and molecular alterations are orchestrated in providing HT tolerance to a genotype. One mechanism to counter HT is overcoming high-temperature-induced membrane superfluidity and structural disorganizations. Several HT lipidomic studies on different genotypes have indicated the potential involvement of membrane lipid remodelling in providing HT tolerance. Advances in high-throughput analytical techniques such as tandem mass spectrometry have paved the way for large-scale identification and quantification of the enormously diverse lipid molecules in a single run. Physiological trait-based breeding has been employed so far to identify and select HT tolerant genotypes but has several disadvantages, such as the genotype-phenotype gap affecting the efficiency of identifying the underlying genetic association. Tolerant genotypes maintain a high photosynthetic rate, stable membranes, and membrane-associated mechanisms. In this context, studying the HT-induced membrane lipid remodelling, resultant of several up-/down-regulations of genes and post-translational modifications, will aid in identifying potential lipid biomarkers for HT tolerance/susceptibility. The identified lipid biomarkers (LIPIDOTYPE) can thus be considered an intermediate phenotype, bridging the gap between genotype-phenotype (genotype-LIPIDOTYPE-phenotype). Recent works integrating metabolomics with quantitative genetic studies such as GWAS (mGWAS) have provided close associations between genotype, metabolites, and stress-tolerant phenotypes. This review has been sculpted to provide a potential workflow that combines MS-based lipidomics and the robust GWAS (lipidomics assisted GWAS-lGWAS) to identify membrane lipid remodelling related genes and associations which can be used to develop HS tolerant genotypes with enhanced membrane thermostability (MTS) and heat stable photosynthesis (HP).


Assuntos
Temperatura Alta , Lipidômica , Biomarcadores , Produtos Agrícolas/genética , Estudo de Associação Genômica Ampla , Genótipo , Lipídeos de Membrana , Fenótipo , Melhoramento Vegetal , Estresse Fisiológico/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...