Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627304

RESUMO

Reactive oxygen species (ROS) are highly reactive molecules generated in living organisms and an excessive production of ROS culminates in oxidative stress and cellular damage. Notably, oxidative stress plays a critical role in the pathogenesis of a number of oral mucosal diseases, including oral mucositis, which remains one of cancer treatments' most common side effects. We have shown previously that oral keratinocytes are remarkably sensitive to oxidative stress, and this may hinder the development and reproducibility of epithelial cell-based models of oral disease. Here, we examined the oxidative stress signatures that parallel oral toxicity by reproducing the initial events taking place during cancer treatment-induced oral mucositis. We used three oral epithelial cell lines (an immortalized normal human oral keratinocyte cell line, OKF6, and malignant oral keratinocytes, H357 and H400), as well as a mouse model of mucositis. The cells were subjected to increasing oxidative stress by incubation with hydrogen peroxide (H2O2) at concentrations of 100 µM up to 1200 µM, for up to 24 h, and ROS production and real-time kinetics of oxidative stress were investigated using fluorescent dye-based probes. Cell viability was assessed using a trypan blue exclusion assay, a fluorescence-based live-dead assay, and a fluorometric cytotoxicity assay (FCA), while morphological changes were analyzed by means of a phase-contrast inverted microscope. Static and dynamic real-time detection of the redox changes in keratinocytes showed a time-dependent increase of ROS production during oxidative stress-induced epithelial injury. The survival rates of oral epithelial cells were significantly affected after exposure to oxidative stress in a dose- and cell line-dependent manner. Values of TC50 of 800 µM, 800 µM, and 400 µM were reported for H400 cells (54.21 ± 9.04, p < 0.01), H357 cells (53.48 ± 4.01, p < 0.01), and OKF6 cells (48.64 ± 3.09, p < 0.01), respectively. Oxidative stress markers (MPO and MDA) were also significantly increased in oral tissues in our dual mouse model of chemotherapy-induced mucositis. In summary, we characterized and validated an oxidative stress model in human oral keratinocytes and identified optimal experimental conditions for the study of oxidative stress-induced oral epithelial toxicity.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Mucosite , Estomatite , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Reprodutibilidade dos Testes , Estresse Oxidativo , Estomatite/induzido quimicamente , Modelos Animais de Doenças , Corantes Fluorescentes
2.
Geophys Res Lett ; 49(13): e2022GL099499, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245956

RESUMO

Slow-moving landslides are hydrologically driven. Yet, landslide sensitivity to precipitation, and in particular, precipitation extremes, is difficult to constrain because landslides occur under diverse hydroclimatological conditions. Here we use standardized open-access satellite radar interferometry data to quantify the sensitivity of 38 landslides to both a record drought and extreme rainfall that occurred in California between 2015 and 2020. These landslides are hosted in similar rock types, but span more than ∼2 m/yr in mean annual rainfall. Despite the large differences in hydroclimate, we found these landslides exhibited surprisingly similar behaviors and hydrologic sensitivity, which was characterized by faster (slower) than average velocities during wetter (drier) than average years, once the impact of the drought diminished. Our findings may be representative of future landslide behaviors in California where precipitation extremes are predicted to become more frequent with climate change.

3.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563254

RESUMO

Chemoradiation-induced mucositis is a debilitating condition of the gastrointestinal tract eventuating from antineoplastic treatment. It is believed to occur primarily due to oxidative stress mechanisms, which generate Reactive Oxygen Species (ROS). The aim of this scoping review was to assess the role of oxidative stress in the development of Oral Mucositis (OM). Studies from the literature, published in MEDLINE and SCOPUS, that evaluated the oxidative stress pathways or antioxidant interventions for OM, were retrieved to elucidate the current understanding of their relationship. Studies failing inclusion criteria were excluded, and those suitable underwent data extraction, using a predefined data extraction table. Eighty-nine articles fulfilled criteria, and these were sub-stratified into models of study (in vitro, in vivo, or clinical) for evaluation. Thirty-five clinical studies evaluated antioxidant interventions on OM's severity, duration, and pain, amongst other attributes. A number of clinical studies sought to elucidate the protective or therapeutic effects of compounds that had been pre-determined to have antioxidant properties, without directly assessing oxidative stress parameters (these were deemed "indirect evidence"). Forty-seven in vivo studies assessed the capacity of various compounds to prevent OM. Findings were mostly consistent, reporting reduced OM severity associated with a reduction in ROS, malondialdehyde (MDA), myeloperoxidase (MPO), but higher glutathione (GSH) and superoxide dismutase (SOD) activity or expression. Twenty-one in vitro studies assessed potential OM therapeutic interventions. The majority demonstrated successful a reduction in ROS, and in select studies, secondary molecules were assessed to identify the mechanism. In summary, this review highlighted numerous oxidative stress pathways involved in OM pathogenesis, which may inform the development of novel therapeutic targets.


Assuntos
Antioxidantes , Estresse Oxidativo , Estomatite , Antioxidantes/farmacologia , Glutationa/metabolismo , Humanos , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estomatite/induzido quimicamente , Estomatite/terapia
4.
Sci Rep ; 12(1): 3867, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264619

RESUMO

Subsidence induced by groundwater depletion is a grave problem in many regions around the world, leading to a permanent loss of groundwater storage within an aquifer and even producing structural damage at the Earth's surface. California's Tulare Basin is no exception, experiencing about a meter of subsidence between 2015 and 2020. However, understanding the relationship between changes in groundwater volumes and ground deformation has proven difficult. We employ surface displacement measurements from Interferometric Synthetic Aperture Radar (InSAR) and gravimetric estimates of terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) satellite pair to characterize the hydrological dynamics within the Tulare basin. The removal of the long-term aquifer compaction from the InSAR time series reveals coherent short-term variations that correlate with hydrological features. For example, in the winter of 2018-2019 uplift is observed at the confluence of several rivers and streams that drain into the southeastern edge of the basin. These observations, combined with estimates of mass changes obtained from the orbiting GRACE satellites, form the basis for imaging the monthly spatial variations in water volumes. This approach facilitates the quick and effective synthesis of InSAR and gravimetric datasets and will aid efforts to improve our understanding and management of groundwater resources around the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...