Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854158

RESUMO

Invasive insects threaten ecosystem stability, public health, and food security. Documenting newly invasive species and understanding how they reach into new territories, establish populations, and interact with other species remain vitally important. Here, we report on the invasion of the South American leafhopper, Curtara insularis into Africa, where it has established populations in Ghana, encroaching inland at least 350 km off the coast. Importantly, 80% of the specimens collected were intercepted between 160 and 190 m above ground. Further, the fraction of this species among all insects collected was also higher at altitude, demonstrating its propensity to engage in high-altitude windborne dispersal. Its aerial densities at altitude translate into millions of migrants/km over a year, representing massive propagule pressure. Given the predominant south-westerly winds, these sightings suggest an introduction of C. insularis into at least one of the Gulf of Guinea ports. To assess the contribution of windborne dispersal to its spread in a new territory, we examine records of C. insularis range-expansion in the USA. Reported first in 2004 from central Florida, it reached north Florida (Panhandle) by 2008-2011 and subsequently spread across the southeastern and south-central US. Its expansion fits a "diffusion-like" process with 200-300 km long "annual displacement steps"-a pattern consistent with autonomous dispersal rather than vehicular transport. Most "steps" are consistent with common wind trajectories from the nearest documented population, assuming 2-8 hours of wind-assisted flight at altitude. Curtara insularis has been intercepted at US ports and on trucks. Thus, it uses multiple dispersal modalities, yet its rapid overland spread is better explained by its massive propagule pressure linked with its high-altitude windborne dispersal. We propose that high-altitude windborne dispersal is common yet under-appreciated in invasive insect species.

2.
Nat Ecol Evol ; 6(11): 1687-1699, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36216903

RESUMO

Data suggest that the malaria vector mosquito Anopheles coluzzii persists during the dry season in the Sahel through a dormancy mechanism known as aestivation; however, the contribution of aestivation compared with alternative strategies such as migration is unknown. Here we marked larval Anopheles mosquitoes in two Sahelian villages in Mali using deuterium (2H) to assess the contribution of aestivation to persistence of mosquitoes through the seven-month dry season. After an initial enrichment period, 33% of An. coluzzii mosquitoes were strongly marked. Seven months following enrichment, multiple analysis methods supported the ongoing presence of marked mosquitoes, compatible with the prediction that the fraction of marked mosquitoes should remain stable throughout the dry season if local aestivation is occurring. The results suggest that aestivation is a major persistence mechanism of An. coluzzii in the Sahel, contributing at least 20% of the adults at the onset of rains. This persistence strategy could influence mosquito control and malaria elimination campaigns.


Assuntos
Anopheles , Malária , Animais , Estivação , Estações do Ano , Mosquitos Vetores
3.
Front Epidemiol ; 2: 1001782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38455321

RESUMO

Recent studies have reported Anopheles mosquitoes captured at high-altitude (40-290 m above ground) in the Sahel. Here, we describe this migration modality across genera and species of African Culicidae and examine its implications for disease transmission and control. As well as Anopheles, six other genera-Culex, Aedes, Mansonia, Mimomyia, Lutzia, and Eretmapodites comprised 90% of the 2,340 mosquitoes captured at altitude. Of the 50 molecularly confirmed species (N = 2,107), 33 species represented by multiple specimens were conservatively considered high-altitude windborne migrants, suggesting it is a common migration modality in mosquitoes (31-47% of the known species in Mali), and especially in Culex (45-59%). Overall species abundance varied between 2 and 710 specimens/species (in Ae. vittatus and Cx. perexiguus, respectively). At altitude, females outnumbered males 6:1, and 93% of the females have taken at least one blood meal on a vertebrate host prior to their departure. Most taxa were more common at higher sampling altitudes, indicating that total abundance and diversity are underestimated. High-altitude flight activity was concentrated between June and November coinciding with availability of surface waters and peak disease transmission by mosquitoes. These hallmarks of windborne mosquito migration bolster their role as carriers of mosquito-borne pathogens (MBPs). Screening 921 mosquitoes using pan-Plasmodium assays revealed that thoracic infection rate in these high-altitude migrants was 2.4%, providing a proof of concept that vertebrate pathogens are transported by windborne mosquitoes at altitude. Fourteen of the 33 windborne mosquito species had been reported as vectors to 25 MBPs in West Africa, which represent 32% of the MBPs known in that region and include those that inflict the heaviest burden on human and animal health, such as malaria, yellow fever, dengue, and Rift Valley fever. We highlight five arboviruses that are most likely affected by windborne mosquitoes in West Africa: Rift Valley fever, O'nyong'nyong, Ngari, Pangola, and Ndumu. We conclude that the study of windborne spread of diseases by migrating insects and the development of surveillance to map the sources, routes, and destinations of vectors and pathogens is key to understand, predict, and mitigate existing and new threats of public health.

4.
J Med Entomol ; 58(1): 343-349, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-32667040

RESUMO

Recent results of high-altitude windborne mosquito migration raised questions about the viability of these mosquitoes despite ample evidence that many insect species, including other dipterans, have been known to migrate regularly over tens or hundreds of kilometers on high-altitude winds and retain their viability. To address these concerns, we subjected wild Anopheles gambiae s.l. Giles mosquitoes to a high-altitude survival assay, followed by oviposition (egg laying) and blood feeding assays. Despite carrying out the survival assay under exceptionally harsh conditions that probably provide the lowest survival potential following high altitude flight, a high proportion of the mosquitoes survived for 6- and even 11-h assay durations at 120- to 250-m altitudes. Minimal differences in egg laying success were noted between mosquitoes exposed to high altitude survival assay and those kept near the ground. Similarly, minimal differences were found in the female's ability to take an additional bloodmeal after oviposition between these groups. We conclude that similar to other high-altitude migrating insects, mosquitoes are able to withstand extended high-altitude flight and subsequently reproduce and transmit pathogens by blood feeding on new hosts.


Assuntos
Migração Animal , Anopheles/fisiologia , Comportamento Alimentar , Mosquitos Vetores/fisiologia , Oviposição , Sobrevida , Altitude , Animais , Feminino , Malária , Mali , Vento
5.
Sci Rep ; 10(1): 20523, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239619

RESUMO

Long-distance migration of insects impacts food security, public health, and conservation-issues that are especially significant in Africa. Windborne migration is a key strategy enabling exploitation of ephemeral havens such as the Sahel, however, its knowledge remains sparse. In this first cross-season investigation (3 years) of the aerial fauna over Africa, we sampled insects flying 40-290 m above ground in Mali, using nets mounted on tethered helium-filled balloons. Nearly half a million insects were caught, representing at least 100 families from thirteen orders. Control nets confirmed that the insects were captured at altitude. Thirteen ecologically and phylogenetically diverse species were studied in detail. Migration of all species peaked during the wet season every year across localities, suggesting regular migrations. Species differed in flight altitude, seasonality, and associated weather conditions. All taxa exhibited frequent flights on southerly winds, accounting for the recolonization of the Sahel from southern source populations. "Return" southward movement occurred in most taxa. Estimates of the seasonal number of migrants per species crossing Mali at latitude 14°N were in the trillions, and the nightly distances traversed reached hundreds of kilometers. The magnitude and diversity of windborne insect migration highlight its importance and impacts on Sahelian and neighboring ecosystems.


Assuntos
Altitude , Migração Animal/fisiologia , Biodiversidade , Insetos/fisiologia , Animais , Voo Animal/fisiologia , Geografia , Mali , Filogenia , Estações do Ano , Especificidade da Espécie
6.
Malar J ; 19(1): 263, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698842

RESUMO

BACKGROUND: In the West African Sahel, mosquito reproduction is halted during the 5-7 month-long dry season, due to the absence of surface waters required for larval development. However, recent studies have suggested that both Anopheles gambiae sensu stricto (s.s.) and Anopheles arabiensis repopulate this region via migration from distant locations where larval sites are perennial. Anopheles coluzzii engages in more regional migration, presumably within the Sahel, following shifting resources correlating with the ever-changing patterns of Sahelian rainfall. Understanding mosquito migration is key to controlling malaria-a disease that continues to claim more than 400,000 lives annually, especially those of African children. Using tethered flight data of wild mosquitoes, the distribution of flight parameters were evaluated as indicators of long-range migrants versus appetitive flyers, and the species specific seasonal differences and gonotrophic states compared between two flight activity modalities. Morphometrical differences were evaluated in the wings of mosquitoes exhibiting high flight activity (HFA) vs. low flight activity (LFA). METHODS: A novel tethered-flight assay was used to characterize flight in the three primary malaria vectors- An. arabiensis, An. coluzzii and An. gambiae s.s. The flights of tethered wild mosquitoes were audio-recorded from 21:00 h to 05:00 h in the following morning and three flight aptitude indices were examined: total flight duration, longest flight bout, and the number of flight bouts during the assay. RESULTS: The distributions of all flight indices were strongly skewed to the right, indicating that the population consisted of a majority of low-flight activity (LFA) mosquitoes and a minority of high-flight activity (HFA) mosquitoes. The median total flight was 586 s and the maximum value was 16,110 s (~ 4.5 h). In accordance with recent results, flight aptitude peaked in the wet season, and was higher in gravid females than in non-blood-fed females. Flight aptitude was also found to be higher in An. coluzzii compared to An. arabiensis, with intermediate values in An. gambiae s.s., but displaying no statistical difference. Evaluating differences in wing size and shape between LFA individuals and HFA ones, the wing size of HFA An. coluzzii was larger than that of LFAs during the wet season-its length was wider than predicted by allometry alone, indicating a change in wing shape. No statistically significant differences were found in the wing size/shape of An. gambiae s.s. or An. arabiensis. CONCLUSIONS: The partial agreement between the tethered flight results and recent results based on aerial sampling of these species suggest a degree of discrimination between appetitive flyers and long-distance migrants although identifying HFAs as long-distance migrants is not recommended without further investigation.


Assuntos
Migração Animal , Anopheles/fisiologia , Voo Animal , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Variação Biológica Individual , Estações do Ano , Especificidade da Espécie
7.
Nature ; 574(7778): 404-408, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578527

RESUMO

Over the past two decades efforts to control malaria have halved the number of cases globally, yet burdens remain high in much of Africa and the elimination of malaria has not been achieved even in areas where extreme reductions have been sustained, such as South Africa1,2. Studies seeking to understand the paradoxical persistence of malaria in areas in which surface water is absent for 3-8 months of the year have suggested that some species of Anopheles mosquito use long-distance migration3. Here we confirm this hypothesis through aerial sampling of mosquitoes at 40-290 m above ground level and provide-to our knowledge-the first evidence of windborne migration of African malaria vectors, and consequently of the pathogens that they transmit. Ten species, including the primary malaria vector Anopheles coluzzii, were identified among 235 anopheline mosquitoes that were captured during 617 nocturnal aerial collections in the Sahel of Mali. Notably, females accounted for more than 80% of all of the mosquitoes that we collected. Of these, 90% had taken a blood meal before their migration, which implies that pathogens are probably transported over long distances by migrating females. The likelihood of capturing Anopheles species increased with altitude (the height of the sampling panel above ground level) and during the wet seasons, but variation between years and localities was minimal. Simulated trajectories of mosquito flights indicated that there would be mean nightly displacements of up to 300 km for 9-h flight durations. Annually, the estimated numbers of mosquitoes at altitude that cross a 100-km line perpendicular to the prevailing wind direction included 81,000 Anopheles gambiae sensu stricto, 6 million A. coluzzii and 44 million Anopheles squamosus. These results provide compelling evidence that millions of malaria vectors that have previously fed on blood frequently migrate over hundreds of kilometres, and thus almost certainly spread malaria over these distances. The successful elimination of malaria may therefore depend on whether the sources of migrant vectors can be identified and controlled.


Assuntos
Migração Animal/fisiologia , Culicidae/fisiologia , Malária/transmissão , Mosquitos Vetores/fisiologia , Vento , África , Animais , Culicidae/parasitologia , Feminino , Mosquitos Vetores/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...