Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Phys Life Rev ; 48: 176-197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320380

RESUMO

It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.


Assuntos
Poluição do Ar , Dor Crônica , Neuralgia , Humanos , Animais , Dor Crônica/complicações , Neuralgia/etiologia , Estações do Ano
2.
Int J Biol Macromol ; 242(Pt 2): 124892, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196721

RESUMO

Cancer is the second leading cause of death worldwide, and despite the effort of standard treatments, the search for new tools against this disease is necessary. Importantly, it is known that the tumor microenvironment plays a crucial role in tumor initiation, progression, and response to therapies. Therefore, studies of potential drugs that act on these components are as critical as studies regarding antiproliferative substances. Through the years, studies of several natural products, including animal toxins, have been conducted to guide the development of medical compounds. In this review, we present the remarkable antitumor activities of crotoxin, a toxin from the rattlesnake Crotalus durissus terrificus, highlighting its effects on cancer cells and in the modulation of relevant elements in the tumor microenvironment as well as the clinical trials conducted with this compound. In summary, crotoxin acts through several mechanisms of action, such as activation of apoptosis, induction of cell cycle arrest, inhibition of metastasis, and decrease of tumor growth, in different tumor types. Crotoxin also modulates tumor-associated fibroblasts, endothelial cells, and immune cells, which contribute to its antitumoral effects. In addition, preliminary clinical studies confirm the promising results of crotoxin and support its potential future use as an anticancer drug.


Assuntos
Antineoplásicos , Venenos de Crotalídeos , Crotoxina , Neoplasias , Animais , Crotoxina/farmacologia , Venenos de Crotalídeos/toxicidade , Células Endoteliais/metabolismo , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Front Immunol ; 11: 591563, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193433

RESUMO

Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 µg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.


Assuntos
Crotoxina/administração & dosagem , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Imunomodulação/efeitos dos fármacos , Dióxido de Silício , Nanomedicina Teranóstica , Animais , Biomarcadores , Biópsia , Crotoxina/efeitos adversos , Crotoxina/química , Citocinas/metabolismo , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/diagnóstico , Feminino , Camundongos , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Índice de Gravidade de Doença , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Avaliação de Sintomas
4.
Exp Neurol ; 332: 113390, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598929

RESUMO

Because environmental elements modify chronic pain development and endogenous mechanisms of pain control are still a great therapeutic source, we investigated the effects of an early exposure to environmental enrichment (EE) in a translational model of neuropathic pain. Young male rats born and bred in an enriched environment, which did not count on running wheel, underwent chronic constriction injury (CCI) of sciatic nerve. EE abolished neuropathic pain behavior 14 days after CCI. Opioid receptors' antagonism reversed EE-analgesic effect. ß-endorphin and met-enkephalin serum levels were increased only in EE-CCI group. Blockade of glucocorticoid receptors did not alter EE-analgesic effect, although corticosterone circulating levels were increased in EE animals. In the spinal cord, EE controlled CCI-induced serotonin increase. In DRG, EE blunted the expression of ATF-3 after CCI. Surprisingly, EE-CCI group showed a remarkable preservation of sciatic nerve fibers compared to NE-CCI group. This work demonstrated global effects induced by an EE protocol that explain, in part, the protective role of EE upon chronic noxious stimulation, reinforcing the importance of endogenous mechanisms in the prevention of chronic pain development.


Assuntos
Meio Ambiente , Neuralgia/prevenção & controle , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático/lesões , Animais , Sobrevivência Celular , Constrição Patológica , Endorfinas/sangue , Encefalinas/sangue , Hiperalgesia/patologia , Masculino , Fibras Nervosas/patologia , Neuralgia/etiologia , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Nervo Isquiático/patologia , Medula Espinal/metabolismo , Suporte de Carga
5.
J Neurochem ; 155(1): 29-44, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32173863

RESUMO

Delayed-onset muscle soreness (DOMS) is a very common condition in athletes and individuals not accustomed to physical activity that occurs after moderate/high-intensity exercise sessions. The activation of microglial Toll-like receptor 4 (TLR4) in the spinal cord has been described to be important for the induction and maintenance of persistent pain. Based on that, we hypothesize that 70 kilodalton heat-shock protein (Hsp70), a mediator released by exercise, could activate microglial TLR4 in the spinal cord, releasing proinflammatory cytokines and contributing to the start of DOMS. In fact, we found that the knockout of TLR4, myeloid differentiation primary response 88 (MyD88), interleukin-6 (IL-6), or both tumor necrosis factor-α (TNF-α) receptor 1 and TNF-α receptor 2 in mice prevented the development of DOMS following acute aerobic exercise in contrast to the findings in male C57BL/6 wild-type mice. Furthermore, DOMS in exercised wild-type mice was also prevented after pre-treatment with microglia inhibitor, TLR4 antagonist, and anti-Hsp70 antibody. During exercise-induced DOMS, Hsp70 mRNA, TLR4 mRNA, and protein levels, as well as Iba-1 (a microglial marker), IL-6, and TNF-α protein levels, were increased in the muscle and/or spinal cord. Together, these findings suggest that Hsp70 released during exercise-induced DOMS activates the microglial TLR4/IL-6/TNF-α pathway in the spinal cord. Thus, the blockade of TLR4 activation may be a new strategy to prevent the development of DOMS before intense exercise.


Assuntos
Proteínas de Choque Térmico HSP70 , Interleucina-6 , Mialgia/fisiopatologia , Transdução de Sinais , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa , Aerobiose , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Medição da Dor , Condicionamento Físico Animal , Medula Espinal/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética
6.
Toxins (Basel) ; 11(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757011

RESUMO

Neuropathic pain is a disease caused by structural and functional plasticity in central and peripheral sensory pathways that produce alterations in nociceptive processing. Currently, pharmacological treatment for this condition remains a challenge. Crotoxin (CTX), the main neurotoxin of Crotalus durissus terrificus rattlesnake venom, has well described prolonged anti-inflammatory and antinociceptive activities. In spite of its potential benefits, the toxicity of CTX remains a limiting factor for its use. SBA-15 is an inert nanostructured mesoporous silica that, when used as a vehicle, may reduce toxicity and potentiate the activity of different compounds. Based on this, we propose to conjugate crotoxin with SBA-15 (CTX:SBA-15) in order to investigate if when adsorbed to silica, CTX would have its toxicity reduced and its analgesic effect enhanced in neuropathic pain induced by the partial sciatic nerve ligation (PSNL) model. SBA-15 enabled an increase of 35% of CTX dosage. Treatment with CTX:SBA-15 induced a long-lasting reduction of mechanical hypernociception, without modifying the previously known pathways involved in antinociception. Moreover, CTX:SBA-15 reduced IL-6 and increased IL-10 levels in the spinal cord. Surprisingly, the antinociceptive effect of CTX:SBA-15 was also observed after oral administration. These data indicate the potential use of the CTX:SBA-15 complex for neuropathic pain control and corroborates the protective potential of SBA-15.


Assuntos
Analgésicos/uso terapêutico , Crotoxina/uso terapêutico , Neuralgia/tratamento farmacológico , Dióxido de Silício/uso terapêutico , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Animais , Crotoxina/administração & dosagem , Crotoxina/efeitos adversos , Hiperalgesia/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas , Nociceptividade/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Dióxido de Silício/administração & dosagem , Dióxido de Silício/efeitos adversos , Medula Espinal/metabolismo
7.
Exp Cell Res ; 382(2): 111475, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31255600

RESUMO

Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno Tipo I/metabolismo , Gânglios Espinais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática , Glicosilação , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Nitritos/metabolismo , Fosforilação , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
8.
Artigo em Inglês | MEDLINE | ID: mdl-28344594

RESUMO

BACKGROUND: Arthritis is a set of inflammatory conditions that induce aching, stiffness, swelling, pain and may cause functional disability with severe consequences to the patient's lives. These are multi-mediated pathologies that cannot be effectively protected and/or treated. Therefore, the aim of this study was to establish a new model of acute arthritis, using a Lys49-PLA2 (Bothrops asper myotoxin II; MT-II) to induce articular inflammation. METHODS: The articular inflammation was induced by MT-II (10 µg/joint) injection into the left tibio-tarsal or femoral-tibial-patellar joints. Cellular influx was evaluated counting total and differential cells that migrated to the joint. The plasma extravasation was determined using Evans blue dye. The edematogenic response was evaluated measuring the joint thickness using a caliper. The articular hypernociception was determined by a dorsal flexion of the tibio-tarsal joint using an electronic pressure-meter test. The mediators involved in the articular hypernociception were evaluated using receptor antagonists and enzymatic inhibitors. RESULTS: Plasma extravasation in the knee joints was observed 5 and 15 min after MT-II (10 µg/joint) injection. MT-II also induced a polymorphonuclear cell influx into the femoral-tibial-patellar joints observed 8 h after its injection, a period that coincided with the peak of the hyperalgesic effect. Hyperalgesia was inhibited by the pretreatment of the animals with cyclooxygenase inhibitor indomethacin, with type-2 cyclooxygenase inhibitor celecoxib, with AACOCF3 and PACOCF3, inhibitors of cytosolic and Ca2+-independent PLA2s, respectively, with bradykinin B2 receptor antagonist HOE 140, with antibodies against TNFα, IL-1ß, IL-6 and CINC-1 and with selective ET-A (BQ-123) and ET-B (BQ-788) endothelin receptors antagonists. The MT-II-induced hyperalgesia was not altered by the lipoxygenase inhibitor zileuton, by the bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-bradykinin, by the histamine and serotonin antagonists promethazine and methysergide, respectively, by the nitric oxide inhibitor LNMMA and by the inhibitor of matrix 1-, 2-, 3-, 8- and 9- metalloproteinases GM6001 (Ilomastat). CONCLUSION: These results demonstrated the multi-mediated characteristic of the articular inflammation induced by MT-II, which demonstrates its relevance as a model for arthritis mechanisms and treatment evaluation.

9.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954824

RESUMO

Background Arthritis is a set of inflammatory conditions that induce aching, stiffness, swelling, pain and may cause functional disability with severe consequences to the patient's lives. These are multi-mediated pathologies that cannot be effectively protected and/or treated. Therefore, the aim of this study was to establish a new model of acute arthritis, using a Lys49-PLA2 (Bothrops asper myotoxin II; MT-II) to induce articular inflammation. Methods The articular inflammation was induced by MT-II (10 μg/joint) injection into the left tibio-tarsal or femoral-tibial-patellar joints. Cellular influx was evaluated counting total and differential cells that migrated to the joint. The plasma extravasation was determined using Evans blue dye. The edematogenic response was evaluated measuring the joint thickness using a caliper. The articular hypernociception was determined by a dorsal flexion of the tibio-tarsal joint using an electronic pressure-meter test. The mediators involved in the articular hypernociception were evaluated using receptor antagonists and enzymatic inhibitors. Results Plasma extravasation in the knee joints was observed 5 and 15 min after MT-II (10 μg/joint) injection. MT-II also induced a polymorphonuclear cell influx into the femoral-tibial-patellar joints observed 8 h after its injection, a period that coincided with the peak of the hyperalgesic effect. Hyperalgesia was inhibited by the pretreatment of the animals with cyclooxygenase inhibitor indomethacin, with type-2 cyclooxygenase inhibitor celecoxib, with AACOCF3 and PACOCF3, inhibitors of cytosolic and Ca2+-independent PLA2s, respectively, with bradykinin B2 receptor antagonist HOE 140, with antibodies against TNFα, IL-1β, IL-6 and CINC-1 and with selective ET-A (BQ-123) and ET-B (BQ-788) endothelin receptors antagonists. The MT-II-induced hyperalgesia was not altered by the lipoxygenase inhibitor zileuton, by the bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-bradykinin, by the histamine and serotonin antagonists promethazine and methysergide, respectively, by the nitric oxide inhibitor LNMMA and by the inhibitor of matrix 1-, 2-, 3-, 8- and 9- metalloproteinases GM6001 (Ilomastat). Conclusion These results demonstrated the multi-mediated characteristic of the articular inflammation induced by MT-II, which demonstrates its relevance as a model for arthritis mechanisms and treatment evaluation.(AU)


Assuntos
Artrite , Bothrops , Fosfolipases A2 , Óxido Nítrico , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...