Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38498408

RESUMO

Substrate channeling could be very useful for plant metabolic engineering; hence, we propose that functionalized supramolecular self-assembly scaffolds can act as enzymatic hubs able to perform reactions in close contiguity. Virus nanoparticles (VNPs) offer an opportunity in this context, and we present a functionalization strategy to display different enzymes on the outer surface of three different VNPs produced in plants. Tomato bushy stunt virus (TBSV) and Potato virus X (PVX) plant viruses were functionalized by the genetic fusion of the E-coil peptide coding sequence to their respective coat proteins genes, while the enzyme lichenase was tagged with the K-coil peptide. Immobilized E-coil VNPs were able to interact in vitro with the plant-produced functionalized lichenase, and catalysis was demonstrated by employing a lichenase assay. To prove this concept in planta, the Hepatitis B core (HBc) virus-like particles (VLPs) were similarly functionalized by genetic fusion with the E-coil sequence, while acyl-activating enzyme 1, olivetolic acid synthase, and olivetolic acid cyclase enzymes were tagged with the K-coil. The transient co-expression of the K-coil-enzymes together with E-coil-VLPs allowed the establishment of the heterologous cannabinoid precursor biosynthetic pathway. Noteworthy, a significantly higher yield of olivetolic acid glucoside was achieved when the scaffold E-coil-VLPs were employed.

2.
Food Chem ; 443: 138610, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301562

RESUMO

Given their multifaceted roles, carotenoids have garnered significant scientific interest, resulting in a comprehensive and intricate body of literature that occasionally presents conflicting findings concerning the proper characterization, quantification, and bioavailability of these compounds. Nevertheless, it is undeniable that the pursuit of novel carotenoids remains a crucial endeavor, as their diverse properties, functionalities and potential health benefits make them invaluable natural resources in agri-food and health promotion through the diet. In this framework, particular attention is given to ketocarotenoids, viz., astaxanthin (one of them) stands out for its possible multifunctional role as an antioxidant, anticancer, and antimicrobial agent. It has been widely explored in the market and utilized in different applications such as nutraceuticals, food additives, among others. Adonirubin and adonixanthin can be naturally found in plants and microorganisms. Due to the increasing significance of natural-based products and the remarkable opportunity to introduce these ketocarotenoids to the market, this review aims to provide an expert overview of the pros and cons associated with adonirubin and adonixanthin.


Assuntos
Cantaxantina/análogos & derivados , Carotenoides , Antioxidantes
3.
Discov Med ; 35(178): 715-732, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811611

RESUMO

Diabetes mellitus and its complications represent an extremely concerning health problem across the world. The extraordinary worldwide increase of the disease incidence highlights a challenging need for the development of new, safe, effective, and affordable therapeutic approaches. This complex disease, characterized by high blood sugar levels, involves numerous pathogenic processes in its etiology. Even though the molecular mechanisms behind are not clear, it is broadly recognized that oxidative stress, the accumulation of advanced glycation end-products (AGEs) and inflammation are implicated in the development, the progression and the related complications of the disease. In this regard, phenolic compounds represent a valuable therapeutic perspective. Thus, this review is focused on the role of phenolic compounds in diabetes-related oxidative stress, AGEs production and inflammation. In particular, we summarized recent results of in vitro and in vivo studies concerning antioxidant and antiglycative properties of phenolic compounds and also the modulation of activity on inflammation and inflammation-related pathways relevant in diabetes, namely arachidonic acid, nuclear factor-κB, mitogen-activated protein kinases and phosphatidylinositol 3­kinase/protein kinase B signaling pathways, were described. Highlighting thus the anti-diabetic potential of phenolic compounds in the development of preventive or therapeutic strategies for the management of diabetes and its related complications.


Assuntos
Diabetes Mellitus , Resistência à Insulina , Humanos , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus/tratamento farmacológico , Estresse Oxidativo , Fenóis/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240259

RESUMO

Sonic hedgehog medulloblastoma (SHH-MB) accounts for 25-30% of all MBs, and conventional therapy results in severe long-term side effects. New targeted therapeutic approaches are urgently needed, drawing also on the fields of nanoparticles (NPs). Among these, plant viruses are very promising, and we previously demonstrated that tomato bushy stunt virus (TBSV), functionalized on the surface with CooP peptide, specifically targets MB cells. Here, we tested the hypothesis that TBSV-CooP can specifically deliver a conventional chemotherapeutic drug (i.e., doxorubicin, DOX) to MB in vivo. To this aim, a preclinical study was designed to verify, by histological and molecular methods, if multiple doses of DOX-TBSV-CooP were able to inhibit tumor progression of MB pre-neoplastic lesions, and if a single dose was able to modulate pro-apoptotic/anti-proliferative molecular signaling in full-blown MBs. Our results demonstrate that when DOX is encapsulated in TBSV-CooP, its effects on cell proliferation and cell death are similar to those obtained with a five-fold higher dose of non-encapsulated DOX, both in early and late MB stages. In conclusion, these results confirm that CooP-functionalized TBSV NPs are efficient carriers for the targeted delivery of therapeutics to brain tumors.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Nanopartículas , Tombusvirus , Camundongos , Animais , Meduloblastoma/metabolismo , Preparações Farmacêuticas , Proteínas Hedgehog/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Cerebelares/metabolismo , Nanopartículas/química
5.
Nanomaterials (Basel) ; 13(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111013

RESUMO

Homing peptides are widely used to improve the delivery of drugs, imaging agents, and nanoparticles (NPs) to their target sites. Plant virus-based particles represent an emerging class of structurally diverse nanocarriers that are biocompatible, biodegradable, safe, and cost-effective. Similar to synthetic NPs, these particles can be loaded with imaging agents and/or drugs and functionalized with affinity ligands for targeted delivery. Here we report the development of a peptide-guided Tomato Bushy Stunt Virus (TBSV)-based nanocarrier platform for affinity targeting with the C-terminal C-end rule (CendR) peptide, RPARPAR (RPAR). Flow cytometry and confocal microscopy demonstrated that the TBSV-RPAR NPs bind specifically to and internalize in cells positive for the peptide receptor neuropilin-1 (NRP-1). TBSV-RPAR particles loaded with a widely used anticancer anthracycline, doxorubicin, showed selective cytotoxicity on NRP-1-expressing cells. Following systemic administration in mice, RPAR functionalization conferred TBSV particles the ability to accumulate in the lung tissue. Collectively, these studies show the feasibility of the CendR-targeted TBSV platform for the precision delivery of payloads.

6.
Nat Prod Res ; 37(10): 1725-1729, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35921509

RESUMO

In this in vitro study, for the first time was evaluated the antioxidant and anti-inflammatory effect of an Oleuropein-enriched extract (OleE) on bovine mammary epithelial cell line (BME-UV1). OleE was obtained from olives leaves and characterized by HPLC and NMR analysis. Cell viability test indicated that OleE at concentrations of 7.8 up to 250 µg/mL did not exert cytotoxic effect. At concentration of 31.2 up to 250 µg/mL, a dose dependent reduction of ROS production induced by hydrogen peroxide was observed. In addition, OleE at 62.5, 125 and 250 µg/mL showed a dose-dependent reduction in gene expression of TNF, IL1B, and IL10 after exposure to LPS. The downregulation of ROS production and cytokines expression in BME-UV1 by OleE confirmed the antioxidant and anti-inflammatory properties. In vivo experiments will be necessary for future applications of OleE as natural feed supplement in dairy cattle to reduce incidence of oxidative stress in peripartal period.


Assuntos
Antioxidantes , Olea , Bovinos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Células Epiteliais , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36361562

RESUMO

Sumac, Rhus coriaria L., is a Mediterranean plant showing several useful properties, such as antioxidant and neuroprotective effects. Currently, there is no evidence about its possible neuroprotective action in Parkinson's disease (PD). We hypothesized that sumac could modulate mitochondrial functionality in fibroblasts of familial early-onset PD patients showing PARK2 mutations. Sumac extract volatile profile, polyphenolic content and antioxidant activity have been previously characterized. We evaluated ROS and ATP levels on sumac-treated patients' and healthy control fibroblasts. In PD fibroblasts, all treatments were effective in reducing H2O2 levels, while patients' ATP content was modulated differently, probably due to the varying mutations in the PARK2 gene found in individual patients which are also involved in different mitochondrial phenotypes. We also investigated the effect of sumac extract on THP-1-differentiated macrophages, which show different embryogenic origin with respect to fibroblasts. In THP-1 macrophages, sumac treatment determined a reduction in H2O2 levels and an increase in the mitochondrial ATP content in M1, assuming that sumac could polarize the M1 to M2 phenotype, as demonstrated with other food-derived compounds rich in polyphenols. In conclusion, Rhus coriaria L. extracts could represent a potential nutraceutical approach to PD.


Assuntos
Doença de Parkinson , Rhus , Antioxidantes/farmacologia , Doença de Parkinson/tratamento farmacológico , Peróxido de Hidrogênio , Extratos Vegetais/farmacologia , Fibroblastos , Macrófagos , Metabolismo Energético , Trifosfato de Adenosina
8.
Antioxidants (Basel) ; 11(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35453308

RESUMO

Olive oil production is associated with the generation of oil production waste products (OPWPs) rich in water-soluble polyphenols that represent serious environmental problems. Yet OPWPs can offer new opportunities by exploiting their bioactive properties. In this study, we chemically characterized OPWPs polyphenolic extracts and investigated their biological activities in normal and colorectal cancer cells. Hydroxytyrosol (HTyr), the major constituent of these extracts, was used as the control. We show that both HTyr and the extracts affect cell viability by inducing apoptosis and cell cycle arrest. They downregulate inflammation by impairing NF-κB phosphorylation and expression of responsive cytokine genes, as TNF-α and IL-8, at both mRNA and protein levels, and prevent any further increase elicited by external challenges. Mechanistically, HTyr and the extracts activate PPARγ while hampering pro-inflammatory genes expression, acting as a specific agonist, likely through a trans-repression process. Altogether, OPWPs polyphenolic extracts show stronger effects than HTyr, conceivably due to additive or synergistic effects of all polyphenols contained. They display anti-inflammatory properties and these results may pave the way for improving OPWPs extraction and enrichment methods to reduce the environmental impact and support their use to ameliorate the inflammation associated with diseases and tumors.

9.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268827

RESUMO

Rhus coriaria L. (Anacardiaceae), commonly known as sumac, has been used since ancient times for many different applications, and nowadays is used mostly as a spice obtained from its in the Mediterranean and the Middle ground fruits and employed for flavoring and garnishing food, predominantly Eastern regions. Traditionally, sumac has been also used in popular medicine for the treatment of many ailments including hemorrhoids, wound healing, diarrhea, ulcers, and eye inflammation. Sumac drupes are indeed rich in various classes of phytochemicals including organic acids, flavonoids, tannins, and others, which are responsible of their powerful antioxidant capacity, from which treatment of many common diseases such as cardiovascular disease, diabetes, and cancer could benefit. In this work we evaluated the influence of fruit ripeness, conservation, and processing. To this aim, a phytochemical characterization of six different samples of Rhus coriaria L. was carried out. Specifically, headspace solid-phase micro extraction gas chromatography coupled to mass spectrometry and comprehensive two-dimensional liquid chromatography coupled to photodiode array and mass spectrometry detection, were employed. A total of 263 volatile compounds, including terpene hydrocarbons, acids, and aldehydes, as well as 83 polyphenolic compounds, mainly gallic acid derivatives, were positively identified. All samples showed a significant antioxidant activity by means of oxygen radical absorbance capacity, in line with their polyphenolic content and composition. Such findings set a solid ground to support the utilization of this plant as an attractive target for novel nutraceutical approaches and for drug discovery.


Assuntos
Rhus
10.
Nat Prod Res ; 36(6): 1648-1652, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33678070

RESUMO

Hydroalcoholic extracts obtained from buds of P. nigra, P. deltoides and P. trichocarpa were characterized by HPLC-DAD-MS analysis and subsequently evaluated in vitro for their antioxidant and anti-inflammatory activities. ABTS and DPPH assays evidenced that P. nigra showed the best antioxidant activity in line with its highest total phenolic content. The analysis of the anti-inflammatory activity clearly demonstrated that all extracts suppressed the production of key pro-inflammatory cytokines (IL-6, Il-1ß and TNF-α) and HMGB1 inflammatory danger signal. These results show antioxidant and critical anti-inflammatory activities mediated by the extracts, emphasising their potentiality as therapeutic agents.


Assuntos
Populus , Salicaceae , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Populus/química
11.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638864

RESUMO

Medulloblastoma (MB) is a primary central nervous system tumor affecting mainly young children. New strategies of drug delivery are urgent to treat MB and, in particular, the SHH-dependent subtype-the most common in infants-in whom radiotherapy is precluded due to the severe neurological side effects. Plant virus nanoparticles (NPs) represent an innovative solution for this challenge. Tomato bushy stunt virus (TBSV) was functionally characterized as a carrier for drug targeted delivery to a murine model of Shh-MB. The TBSV NPs surface was genetically engineered with peptides for brain cancer cell targeting, and the modified particles were produced on a large scale using Nicotiana benthamiana plants. Tests on primary cultures of Shh-MB cells allowed us to define the most efficient peptides able to induce specific uptake of TBSV. Immunofluorescence and molecular dynamics simulations supported the hypothesis that the specific targeting of the NPs was mediated by the interaction of the peptides with their natural partners and reinforced by the presentation in association with the virus. In vitro experiments demonstrated that the delivery of Doxorubicin through the chimeric TBSV allowed reducing the dose of the chemotherapeutic agent necessary to induce a significant decrease in tumor cells viability. Moreover, the systemic administration of TBSV NPs in MB symptomatic mice, independently of sex, confirmed the ability of the virus to reach the tumor in a specific manner. A significant advantage in the recognition of the target appeared when TBSV NPs were functionalized with the CooP peptide. Overall, these results open new perspectives for the use of TBSV as a vehicle for the targeted delivery of chemotherapeutics to MB in order to reduce early and late toxicity.


Assuntos
Neoplasias Cerebelares , Doxorrubicina , Sistemas de Liberação de Medicamentos , Proteínas Hedgehog/metabolismo , Meduloblastoma , Nanopartículas , Proteínas de Neoplasias/metabolismo , Tombusvirus/química , Animais , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Proteínas Hedgehog/genética , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos Mutantes , Nanopartículas/química , Nanopartículas/uso terapêutico , Proteínas de Neoplasias/genética , Nicotiana/virologia
12.
Am J Emerg Med ; 50: 22-26, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34271231

RESUMO

BACKGROUND: Evidence is lacking about the impact of subsequent COVID-19 pandemic waves on Emergency Departments (ED). We analyzed the differences in patterns of ED visits in Italy during the two pandemic waves, focusing on changes in accesses for acute and chronic diseases. METHODS: We conducted a retrospective study using data from a metropolitan area in northern Italy that includes twelve ED. We analyzed weekly trends in non-COVID-19 ED visits during the first (FW) and second wave (SW) of the pandemic. Incidence rate ratios (IRRs) of triage codes, patient destination, and cause-specific ED visits in the FW and SW of the year 2020 vs. 2019 were estimated using Poisson regression models. MAIN FINDINGS: We found a significant decrease of ED visits by triage code, which was more marked for low priority codes and during the FW. We found an increased share of hospitalizations compared to home discharges both in the FW and in the SW. ED visits for acute and chronic conditions decreased during the FW, ranging, from -70% for injuries (IRR = 0.2862, p < 0.001) to -50% and - 60% for ischemic heart disease and heart failure. CONCLUSIONS: The two pandemic waves led to a selection of patients with higher and more urgent needs of acute hospital care. These findings should lead to investigate how to improve systems' capacity to manage changes in population needs.


Assuntos
COVID-19/epidemiologia , Serviço Hospitalar de Emergência/estatística & dados numéricos , Doença Aguda , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Doença Crônica , Estudos Transversais , Utilização de Instalações e Serviços , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
13.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917644

RESUMO

Oxidative stability of food is one of the most important parameters affecting integrity and consequently nutritional properties of dietary constituents. Antioxidants are widely used to avoid deterioration during transformation, packaging, and storage of food. In this paper, novel poly (vinyl alcohol) (PVA)-based films were prepared by solvent casting method adding an hydroxytyrosol-enriched extract (HTyrE) or an oleuropein-enriched extract (OleE) in different percentages (5, 10 and 20% w/w) and a combination of both at 5% w/w. Both extracts were obtained from olive oil wastes and by-products using a sustainable process based on membrane technologies. Qualitative and quantitative analysis of each sample carried out by high performance liquid chromatography (HPLC) and nuclear resonance magnetic spectroscopy (NMR) proved that the main components were hydroxytyrosol (HTyr) and oleuropein (Ole), respectively, two well-known antioxidant bioactive compounds found in Olea europaea L. All novel formulations were characterized investigating their morphological, optical and antioxidant properties. The promising performances suggest a potential use in active food packaging to preserve oxidative-sensitive food products. Moreover, this research represents a valuable example of reuse and valorization of agro-industrial wastes and by-products according to the circular economy model.


Assuntos
Antioxidantes/farmacologia , Glucosídeos Iridoides/farmacologia , Azeite de Oliva/química , Álcool Feniletílico/análogos & derivados , Extratos Vegetais/farmacologia , Álcool de Polivinil/química , Resíduos/análise , Varredura Diferencial de Calorimetria , Sequestradores de Radicais Livres/química , Glucosídeos Iridoides/química , Fenóis/análise , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Termogravimetria
14.
PLoS One ; 16(3): e0248995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33750990

RESUMO

The COVID-19 pandemic forced healthcare services organization to adjust to mutating healthcare needs. Not exhaustive data are available on the consequences of this on non-COVID-19 patients. The aim of this study was to assess the impact of the pandemic on non-COVID-19 patients living in a one-million inhabitants' area in Northern Italy (Bologna Metropolitan Area-BMA), analyzing time trends of Emergency Department (ED) visits, hospitalizations and mortality. We conducted a retrospective observational study using data extracted from BMA healthcare informative systems. Weekly trends of ED visits, hospitalizations, in- and out-of-hospital, all-cause and cause-specific mortality between December 1st, 2019 to May 31st, 2020, were compared with those of the same period of the previous year. Non-COVID-19 ED visits and hospitalizations showed a stable trend until the first Italian case of COVID-19 has been recorded, on February 19th, 2020, when they dropped simultaneously. The reduction of ED visits was observed in all age groups and across all severity and diagnosis groups. In the lockdown period a significant increase was found in overall out-of-hospital mortality (43.2%) and cause-specific out-of-hospital mortality related to neoplasms (76.7%), endocrine, nutritional and metabolic (79.5%) as well as cardiovascular (32.7%) diseases. The pandemic caused a sudden drop of ED visits and hospitalizations of non-COVID-19 patients during the lockdown period, and a concurrent increase in out-of-hospital mortality mainly driven by deaths for neoplasms, cardiovascular and endocrine diseases. As recurrencies of the COVID-19 pandemic are underway, the scenario described in this study might be useful to understand both the population reaction and the healthcare system response at the early phases of the pandemic in terms of reduced demand of care and systems capability in intercepting it.


Assuntos
Causas de Morte , Serviço Hospitalar de Emergência/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , COVID-19/epidemiologia , COVID-19/patologia , COVID-19/virologia , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/patologia , Humanos , Itália/epidemiologia , Doenças Metabólicas/mortalidade , Doenças Metabólicas/patologia , Neoplasias/mortalidade , Neoplasias/patologia , Pandemias , Quarentena , Estudos Retrospectivos , SARS-CoV-2/isolamento & purificação
15.
Nat Prod Res ; 35(16): 2677-2684, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31496275

RESUMO

An hydroxytyrosol (HTyr) enriched extract (HTE), obtained from olive mill wastewaters (OMWW) through an eco-friendly, patented process was tested on two olive tree pathogens, Pseudomonas savastanoi pv. savastanoi (Pss) and Agrobacterium tumefaciens (At). Pss, in particular, is a feared treat for olive tree cultivation being the etiological agent of the olive knot disease responsible of severe production losses. Chemical characterization allowed to identify and quantify HTyr as the main constituent along with other low molecular weight phenols. HTE has proven potent antioxidant activity and significant antimicrobial activity against Pss and At in vitro, in both cases higher than hydroxytyrosol alone, suggesting an important role also of the minor phenolic components, which act synergistically with HTyr. Alternatives to the molecules currently present on the market are needed, but only the use of standardized extraction technologies would allow to conduct solid field studies and enable this circular approach to find a real application in the olive groves.


Assuntos
Anti-Infecciosos , Antioxidantes , Olea/química , Águas Residuárias/química , Agrobacterium tumefaciens , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Álcool Feniletílico/análogos & derivados , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas
16.
Nat Prod Res ; 35(10): 1696-1701, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-31180248

RESUMO

Pomegranate peel extracts prepared in our laboratories from a waste of juice fruit processing were tested on bovine peripheral blood mononuclear cells to evaluate the effects on viability, oxidative stress and proliferation. The (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay pointed out that the extracts were not cytotoxic at the tested concentrations (0.1, 1.0, and 10 µg/mL). A moderate protective effect against Reactive Oxygen Species production induced by hydrogen peroxide or lipopolysaccharide and a significant anti-proliferative activity against proliferation induced by concanavalin A were observed on cell lines treated with the extracts at 10 µg/mL. Based on these results, pomegranate peel extracts seem promising as feed supplement for dairy cattle, in particular around calving, when the animals are subjected to an increase of the metabolic activity, responsible for oxidative stress and diseases. However, in vivo studies are needed to investigate the stability of the extracts across the bovine gastrointestinal tract barrier.


Assuntos
Leucócitos Mononucleares/citologia , Extratos Vegetais/farmacologia , Punica granatum/química , Animais , Antioxidantes/farmacologia , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Concanavalina A/farmacologia , Frutas/química , Peróxido de Hidrogênio/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química
17.
Front Plant Sci ; 11: 609910, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381140

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 37,000 people in Italy and has caused widespread socioeconomic disruption. Urgent measures are needed to contain and control the virus, particularly diagnostic kits for detection and surveillance, therapeutics to reduce mortality among the severely affected, and vaccines to protect the remaining population. Here we discuss the potential role of plant molecular farming in the rapid and scalable supply of protein antigens as reagents and vaccine candidates, antibodies for virus detection and passive immunotherapy, other therapeutic proteins, and virus-like particles as novel vaccine platforms. We calculate the amount of infrastructure and production capacity needed to deal with predictable subsequent waves of COVID-19 in Italy by pooling expertise in plant molecular farming, epidemiology and the Italian health system. We calculate the investment required in molecular farming infrastructure that would enable us to capitalize on this technology, and provide a roadmap for the development of diagnostic reagents and biopharmaceuticals using molecular farming in plants to complement production methods based on the cultivation of microbes and mammalian cells.

18.
Sci Adv ; 6(19): eaaz0295, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494704

RESUMO

Plant viruses are natural, self-assembling nanostructures with versatile and genetically programmable shells, making them useful in diverse applications ranging from the development of new materials to diagnostics and therapeutics. Here, we describe the design and synthesis of plant virus nanoparticles displaying peptides associated with two different autoimmune diseases. Using animal models, we show that the recombinant nanoparticles can prevent autoimmune diabetes and ameliorate rheumatoid arthritis. In both cases, this effect is based on a strictly peptide-related mechanism in which the virus nanoparticle acts both as a peptide scaffold and as an adjuvant, showing an overlapping mechanism of action. This successful preclinical testing could pave the way for the development of plant viruses for the clinical treatment of human autoimmune diseases.


Assuntos
Doenças Autoimunes , Nanopartículas , Nanoestruturas , Vírus de Plantas , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/prevenção & controle , Nanopartículas/química , Nanoestruturas/química , Peptídeos/farmacologia
19.
FASEB J ; 34(3): 4512-4526, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32027412

RESUMO

The dentate gyrus of the hippocampus is one of two brain areas generating throughout life new neurons, which contribute to the formation of episodic/associative memories. During aging, the production of new neurons decreases and a cognitive decline occurs. Dietary factors influence neuronal function and synaptic plasticity; among them the phenolic compound hydroxytyrosol (HTyr), present in olive oil, displays neuroprotective effects. As age impacts primarily on the hippocampus-dependent cognitive processes, we wondered whether HTyr could stimulate hippocampal neurogenesis in vivo in adult and aged wild-type mice as well as in the B-cell translocation 1 gene (Btg1) knockout mouse model of accelerated neural aging. We found that treatment with HTyr activates neurogenesis in the dentate gyrus of adult, aged, and Btg1-null mice, by increasing survival of new neurons and decreasing apoptosis. Notably, however, in the aged and Btg1-null dentate gyrus, HTyr treatment also stimulates the proliferation of stem and progenitor cells, whereas in the adult dentate gyrus HTyr lacks any proliferative effect. Moreover, the new neurons generated in aged mice after HTyr treatment are recruited to existing circuits, as shown by the increase of BrdU+ /c-fos+ neurons. Finally, HTyr treatment also reduces the markers of aging lipofuscin and Iba1. Overall, our findings indicate that HTyr treatment counteracts neurogenesis decline during aging.


Assuntos
Giro Denteado/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Genotipagem , Hipocampo/citologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Álcool Feniletílico/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
20.
Nat Prod Res ; 34(10): 1465-1469, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-30278781

RESUMO

Pomegranate peel extracts (PPE) were tested for the first time on BME-UV1, a valid cellular model to study the bovine mammary epithelial metabolism, to evaluate the effects on the oxidative stress and inflammatory status. Based on the statistical analysis of MTT data, PPE at 0.1, 1.0 and 10 µg/mL resulted not cytotoxic after 24 h, 48 h and 7 days of treatment. At the same concentrations, PPE induced a reduction of ROS production elicited by the addition of hydrogen peroxide or lipopolysaccharide evidencing an antioxidant effect confirmed also by a decrease of malondialdehyde. At 10 µg/mL, PPE reduced pro-inflammatory cytokines expressions showing an anti-inflammatory effect on BME-UV1 treated with lipopolysaccharide. Although in vivo experiments are necessary, the results of this study are promising for future applications of PPE as feed supplement for dairy cattle, in particular around calving, when the animals are more subject to oxidative stress and inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Glândulas Mamárias Animais/citologia , Extratos Vegetais/farmacologia , Punica granatum/química , Animais , Bovinos , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Feminino , Frutas/química , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...