Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0071624, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39345140

RESUMO

The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis. Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. Here, we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models, including mice exhibiting advanced pulmonary disease, can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.

2.
ACS Infect Dis ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315541

RESUMO

Tuberculosis is the leading cause of mortality by infectious agents worldwide. The necrotic debris, known as caseum, which accumulates in the center of pulmonary lesions and cavities is home to nonreplicating drug-tolerant Mycobacterium tuberculosis that presents a significant hurdle to achieving a fast and durable cure. Fluoroquinolones such as moxifloxacin are highly effective at killing this nonreplicating persistent bacterial population and boosting TB lesion sterilization. Fluoroquinolones target bacterial DNA gyrase, which catalyzes the negative supercoiling of DNA and relaxes supercoils ahead of replication forks. In this study, we investigated the potency of several other classes of gyrase inhibitors against M. tuberculosis in different states of replication. In contrast to fluoroquinolones, many other gyrase inhibitors kill only replicating bacterial cultures but produce negligible cidal activity against M. tuberculosis in ex vivo rabbit caseum. We demonstrate that while these inhibitors are capable of inhibiting M. tuberculosis gyrase DNA supercoiling activity, fluoroquinolones are unique in their ability to cleave double-stranded DNA at low micromolar concentrations. We hypothesize that double-strand break formation is an important driver of gyrase inhibitor-mediated bactericidal potency against nonreplicating persistent M. tuberculosis populations in the host. This study provides general insight into the lesion sterilization potential of different gyrase inhibitor classes and informs the development of more effective chemotherapeutic options against persistent mycobacterial infections.

3.
Nat Commun ; 15(1): 7311, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39181887

RESUMO

TBI-223, a novel oxazolidinone for tuberculosis, is designed to provide improved efficacy and safety compared to linezolid in combination with bedaquiline and pretomanid (BPaL). We aim to optimize the dosing of TBI-223 within the BPaL regimen for enhanced therapeutic outcomes. TBI-223 is investigated in preclinical monotherapy, multidrug therapy, and lesion penetration experiments to describe its efficacy and safety versus linezolid. A translational platform incorporating linezolid and BPaL data from preclinical experiments and 4 clinical trials (NCT00396084, NCT02333799, NCT03086486, NCT00816426) is developed, enabling validation of the framework. TBI-223 preclinical and Phase 1 data (NCT03758612) are applied to the translational framework to predict clinical outcomes and optimize TBI-223 dosing in combination with bedaquiline and pretomanid. Results indicate that daily doses of 1200-2400 mg TBI-223 may achieve efficacy comparable to the BPaL regimen, with >90% of patients predicted to reach culture conversion by two months.


Assuntos
Antituberculosos , Diarilquinolinas , Linezolida , Oxazolidinonas , Linezolida/administração & dosagem , Linezolida/uso terapêutico , Humanos , Antituberculosos/administração & dosagem , Antituberculosos/uso terapêutico , Oxazolidinonas/administração & dosagem , Oxazolidinonas/uso terapêutico , Diarilquinolinas/administração & dosagem , Diarilquinolinas/uso terapêutico , Animais , Feminino , Masculino , Mycobacterium tuberculosis/efeitos dos fármacos , Quimioterapia Combinada , Adulto , Tuberculose/tratamento farmacológico , Resultado do Tratamento , Pessoa de Meia-Idade , Camundongos , Relação Dose-Resposta a Droga , Nitroimidazóis
4.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798577

RESUMO

The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. To demonstrate that this translates to more effective cure, we first confirmed the role of rifampin, with or without pyrazinamide, as essential to achieve effective bactericidal responses and sterilizing cure in the current standard of care regimen in chronically infected C3HeB/FeJ mice compared to BALB/c mice. Thus, demonstrating added value in testing clinically relevant regimens in murine models of increasing pathologic complexity. Next we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models including mice exhibiting advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.

5.
ACS Infect Dis ; 10(5): 1679-1695, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581700

RESUMO

Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Oxazolidinonas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazolidinonas/farmacologia , Oxazolidinonas/química , Animais , Testes de Sensibilidade Microbiana , Camundongos , Humanos , Linezolida/farmacologia , Linezolida/química , Farmacorresistência Bacteriana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
6.
Antimicrob Agents Chemother ; 67(11): e0059723, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37791784

RESUMO

BTZ-043, a suicide inhibitor of the Mycobacterium tuberculosis cell wall synthesis decaprenylphosphoryl-beta-D-ribose 2' epimerase, is under clinical development as a potential new anti-tuberculosis agent. BTZ-043 is potent and bactericidal in vitro but has limited activity against non-growing bacilli in rabbit caseum. To better understand its behavior in vivo, BTZ-043 was evaluated for efficacy and spatial drug distribution as a single agent in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon Mycobacterium tuberculosis infection. BTZ-043 promoted significant reductions in lung and spleen bacterial burdens in the C3HeB/FeJ mouse model after 2 months of therapy. BTZ-043 penetrates cellular and necrotic lesions and was retained at levels above the serum-shifted minimal inhibitory concentration in caseum. The calculated rate of kill was found to be highest and dose-dependent during the second month of treatment. BTZ-043 treatment was associated with improved histology scores of pulmonary lesions, especially compared to control mice, which experienced advanced fulminant neutrophilic alveolitis in the absence of treatment. These positive treatment responses to BTZ-043 monotherapy in a mouse model of advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in the caseum, and its high potency and bactericidal nature at drug concentrations achieved in necrotic lesions.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Camundongos , Animais , Coelhos , Camundongos Endogâmicos C3H , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Camundongos Endogâmicos
7.
Antimicrob Agents Chemother ; 67(9): e0028423, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37565762

RESUMO

Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio® quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA. Application of the RS ratio in the C3HeB/FeJ mouse model demonstrated that Mycobacterium tuberculosis populations residing in different tissue microenvironments are phenotypically distinct and respond differently to drug treatment with rifampin, isoniazid, or bedaquiline. This work provides a foundational basis required to address how anatomic and pathologic microenvironmental niches may contribute to long treatment duration and drug tolerance during the treatment of human tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Camundongos Endogâmicos C3H , Tuberculose/tratamento farmacológico , Pulmão/microbiologia , Camundongos Endogâmicos
8.
Antimicrob Agents Chemother ; 67(9): e0038123, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37493373

RESUMO

Necrotic lesions and cavities filled with caseum are a hallmark of mycobacterial pulmonary disease. Bronchocavitary Mycobacterium abscessus disease is associated with poor treatment outcomes. In caseum surrogate, M. abscessus entered an extended stationary phase showing tolerance to killing by most current antibiotics, suggesting that caseum persisters contribute to the poor performance of available treatments. Novel ADP-ribosylation-resistant rifabutin analogs exhibited bactericidal activity against these M. abscessus persisters at concentrations achievable by rifamycins in caseum.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Rifamicinas , Humanos , Rifabutina/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
9.
J Med Chem ; 66(11): 7553-7569, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37235809

RESUMO

We tested a series of SQ109 analogues against Mycobacterium tuberculosis and M. smegmatis, in addition to determining their uncoupling activity. We then investigated potential protein targets, involved in quinone and cell wall biosynthesis, using "rescue" experiments. There was little effect of menaquinone on growth inhibition by SQ109, but there were large increases in the IC50 of SQ109 and its analogues (up to 20×) on addition of undecaprenyl phosphate (Up), a homologue of the mycobacterial decaprenyl (C50) diphosphate. Inhibition of an undecaprenyl diphosphate phosphatase, an ortholog of the mycobacterial phosphatase, correlated with cell growth inhibition, and we found that M. smegmatis cell growth inhibition could be well predicted by using uncoupler and Up-rescue results. We also investigated whether SQ109 was metabolized inside Mycobacterium tuberculosis, finding only a single metabolite, previously shown to be inactive. The results are of general interest since they help explain the mechanism of SQ109 in mycobacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Difosfatos/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Mycobacterium smegmatis
10.
mBio ; 14(2): e0059823, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017524

RESUMO

Caseous necrosis is a hallmark of tuberculosis (TB) pathology and creates a niche for drug-tolerant persisters within the host. Cavitary TB and high bacterial burden in caseum require longer treatment duration. An in vitro model that recapitulates the major features of Mycobacterium tuberculosis (Mtb) in caseum would accelerate the identification of compounds with treatment-shortening potential. We have developed a caseum surrogate model consisting of lysed and denatured foamy macrophages. Upon inoculation of Mtb from replicating cultures, the pathogen adapts to the lipid-rich matrix and gradually adopts a nonreplicating state. We determined that the lipid composition of ex vivo caseum and the surrogate matrix are similar. We also observed that Mtb in caseum surrogate accumulates intracellular lipophilic inclusions (ILI), a distinctive characteristic of quiescent and drug-tolerant Mtb. Expression profiling of a representative gene subset revealed common signatures between the models. Comparison of Mtb drug susceptibility in caseum and caseum surrogate revealed that both populations are similarly tolerant to a panel of TB drugs. By screening drug candidates in the surrogate model, we determined that the bedaquiline analogs TBAJ876 and TBAJ587, currently in clinical development, exhibit superior bactericidal against caseum-resident Mtb, both alone and as substitutions for bedaquiline in the bedaquiline-pretomanid-linezolid regimen approved for the treatment of multidrug-resistant TB. In summary, we have developed a physiologically relevant nonreplicating persistence model that reflects the distinct metabolic and drug-tolerant state of Mtb in caseum. IMPORTANCE M. tuberculosis (Mtb) within the caseous core of necrotic granulomas and cavities is extremely drug tolerant and presents a significant hurdle to treatment success and relapse prevention. Many in vitro models of nonreplicating persistence have been developed to characterize the physiologic and metabolic adaptations of Mtb and identify compounds active against this treatment-recalcitrant population. However, there is little consensus on their relevance to in vivo infection. Using lipid-laden macrophage lysates, we have designed and validated a surrogate matrix that closely mimics caseum and in which Mtb develops a phenotype similar to that of nonreplicating bacilli in vivo. The assay is well suited to screen for bactericidal compounds against caseum-resident Mtb in a medium-throughput format, allowing for reduced reliance on resource intensive animal models that present large necrotic lesions and cavities. Importantly, this approach will aid the identification of vulnerable targets in caseum Mtb and can accelerate the development of novel TB drugs with treatment-shortening potential.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Lipídeos
11.
Nat Commun ; 14(1): 1183, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864040

RESUMO

Candida glabrata is a major fungal pathogen notable for causing recalcitrant infections, rapid emergence of drug-resistant strains, and its ability to survive and proliferate within macrophages. Resembling bacterial persisters, a subset of genetically drug-susceptible C. glabrata cells can survive lethal exposure to the fungicidal echinocandin drugs. Herein, we show that macrophage internalization induces cidal drug tolerance in C. glabrata, expanding the persister reservoir from which echinocandin-resistant mutants emerge. We show that this drug tolerance is associated with non-proliferation and is triggered by macrophage-induced oxidative stress, and that deletion of genes involved in reactive oxygen species detoxification significantly increases the emergence of echinocandin-resistant mutants. Finally, we show that the fungicidal drug amphotericin B can kill intracellular C. glabrata echinocandin persisters, reducing emergence of resistance. Our study supports the hypothesis that intra-macrophage C. glabrata is a reservoir of recalcitrant/drug-resistant infections, and that drug alternating strategies can be developed to eliminate this reservoir.


Assuntos
Antifúngicos , Equinocandinas , Tolerância a Medicamentos , Antifúngicos/farmacologia , Candida glabrata/genética , Macrófagos , Resistência a Medicamentos
12.
Tuberculosis (Edinb) ; 139: 102318, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36889104

RESUMO

As a facultative intracellular pathogen, M. tuberculosis (Mtb) is highly adapted to evading antibacterial mechanisms in phagocytic cells. Both the macrophage and pathogen experience transcriptional and metabolic changes from the onset of phagocytosis. To account for this interaction in the assessment of intracellular drug susceptibility, we allowed a 3-day preadaptation phase post-macrophage infection prior to drug treatment. We found that intracellular Mtb in human monocyte-derived macrophages (MDM) presents dramatic alterations in susceptibility to isoniazid, sutezolid, rifampicin and rifapentine when compared to axenic culture. Infected MDM gradually accumulate lipid bodies, adopting a characteristic appearance reminiscent of foamy macrophages in granulomas. Furthermore, TB granulomas in vivo develop hypoxic cores with decreasing oxygen tension gradients across their radii. Accordingly, we evaluated the effects of hypoxia on preadapted intracellular Mtb in our MDM model. We observed that hypoxia induced greater lipid body formation and no additional shifts in drug tolerance, suggesting that the adaptation of intracellular Mtb to baseline host cell conditions under normoxia dominates changes to intracellular drug susceptibility. Using unbound plasma concentrations in patients as surrogates for free drug concentrations in lung interstitial fluid, we estimate that intramacrophage Mtb in granulomas are exposed to bacteriostatic concentrations of most study drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/metabolismo , Macrófagos/microbiologia , Granuloma/metabolismo , Hipóxia/metabolismo
13.
Nat Commun ; 13(1): 2203, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459278

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to resist and tolerate antibiotics complicates the development of improved tuberculosis (TB) chemotherapies. Here we define the Mtb protein CinA as a major determinant of drug tolerance and as a potential target to shorten TB chemotherapy. By reducing the fraction of drug-tolerant persisters, genetic inactivation of cinA accelerated killing of Mtb by four antibiotics in clinical use: isoniazid, ethionamide, delamanid and pretomanid. Mtb ΔcinA was killed rapidly in conditions known to impede the efficacy of isoniazid, such as during nutrient starvation, during persistence in a caseum mimetic, in activated macrophages and during chronic mouse infection. Deletion of CinA also increased in vivo killing of Mtb by BPaL, a combination of pretomanid, bedaquiline and linezolid that is used to treat highly drug-resistant TB. Genetic and drug metabolism studies suggest that CinA mediates drug tolerance via cleavage of NAD-drug adducts.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tolerância a Medicamentos , Isoniazida/farmacologia , Camundongos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
14.
Antimicrob Agents Chemother ; 66(3): e0221221, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35099272

RESUMO

Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic, rather than pharmacokinetic, factors. Our results pave the way toward the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multidrug combinations to enable the prioritization of promising regimens for clinical trials.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas , Coelhos
15.
J Am Soc Mass Spectrom ; 32(11): 2664-2674, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672552

RESUMO

Mass spectrometry imaging investigations of tissues infected with agents that require high-security biocontainment, such as Mycobacterium tuberculosis, have been limited due to incompatible sterilization techniques. Here we describe an on-slide heat sterilization method that enables mass spectrometry imaging investigations of pharmaceuticals, lipids, and metabolites in infected tissue samples outside of biocontainment. An evaluation of different temperatures and incubation times determined that 100 °C for 1 h was essential to sterilize 5 times the bacterial burden observed in tuberculosis (TB) cavity sections. Laser-capture microdissection combined with liquid chromatography with tandem mass spectrometry quantitation, in addition to mass spectrometry imaging, showed that no degradation was observed following the on-slide heat sterilization protocol for a variety of drug classes covering a range of physicochemical properties. Utilizing the tissue mimetic model, we demonstrated that the detection of lipid and metabolite ions was not impacted by heat sterilization and that, for several metabolites, the on-slide heat sterilization method improved the sensitivity when compared to control samples. An application of the on-slide heat sterilization to M. tuberculosis infected tissue enabled the first detection and spatial distribution of lipids indicative of a lysosomal storage disease phenotype within TB granuloma macrophages, in addition to the differential distribution of metabolites central to the fatty acid oxidation pathway. These initial investigations detected a pronounced heterogeneity within the cellular regions and necrotic cores of individual TB granulomas and across different evolving granulomas. This study provides the framework for mass spectrometry imaging investigations of high-threat pathogens outside of biocontainment.


Assuntos
Imagem Molecular/métodos , Mycobacterium tuberculosis/efeitos da radiação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Esterilização/métodos , Animais , Cromatografia Líquida , Bases de Dados de Produtos Farmacêuticos , Feminino , Temperatura Alta , Pulmão/diagnóstico por imagem , Pulmão/microbiologia , Camundongos , Coelhos , Tuberculose/diagnóstico por imagem , Tuberculose/microbiologia
16.
ACS Infect Dis ; 7(8): 2492-2507, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34279904

RESUMO

SQ109 is a drug candidate for the treatment of tuberculosis (TB). It is thought to target primarily the protein MmpL3 in Mycobacterium tuberculosis, but it also inhibits the growth of some other bacteria. SQ109 is metabolized by the liver, and it has been proposed that some of its metabolites might be responsible for its activity against TB. Here, we synthesized six potential P450 metabolites of SQ109 and used these as well as 10 other likely metabolites as standards in a mass spectrometry study of M. tuberculosis-infected rabbits treated with SQ109, in addition to testing all 16 putative metabolites for antibacterial activity. We found that there were just two major metabolites in lung tissue: a hydroxy-adamantyl analog of SQ109 and N'-adamantylethylenediamine. Neither of these, or the other potential metabolites tested, inhibited the growth of M. tuberculosis or of M. smegmatis, Bacillus subtilis, or E. coli, making it unlikely that an SQ109 metabolite contributes to its antibacterial activity. In the rabbit TB model, it is thus the gradual accumulation of nonmetabolized SQ109 in tissues to therapeutic levels that leads to good efficacy. Our results also provide new insights into how SQ109 binds to its target MmpL3, based on our mass spectroscopy results which indicate that the charge in SQ109 is primarily localized on the geranyl nitrogen, explaining the very short distance to a key Asp found in the X-ray structure of SQ109 bound to MmpL3.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Escherichia coli , Coelhos , Tuberculose/tratamento farmacológico
17.
Antimicrob Agents Chemother ; 65(10): e0050621, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34252307

RESUMO

Amikacin and kanamycin are second-line injectables used in the treatment of multidrug-resistant tuberculosis (MDR-TB) based on the clinical utility of streptomycin, another aminoglycoside and first-line anti-TB drug. While streptomycin was tested as a single agent in the first controlled TB clinical trial, introduction of amikacin and kanamycin into MDR-TB regimens was not preceded by randomized controlled trials. A recent large retrospective meta-analysis revealed that compared with regimens without any injectable drug, amikacin provided modest benefits, and kanamycin was associated with worse outcomes. Although their long-term use can cause irreversible ototoxicity, they remain part of MDR-TB regimens because they have a role in preventing emergence of resistance to other drugs. To quantify the contribution of amikacin and kanamycin to second-line regimens, we applied two-dimensional matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging in large lung lesions, quantified drug exposure in lung and in lesions of rabbits with active TB, and measured the concentrations required to kill or inhibit growth of the resident bacterial populations. Using these metrics, we applied site-of-action pharmacokinetic and pharmacodynamic (PK-PD) concepts and simulated drug coverage in patients' lung lesions. The results provide a pharmacological explanation for the limited clinical utility of both agents and reveal better PK-PD lesion coverage for amikacin than kanamycin, consistent with retrospective data of contribution to treatment success. Together with recent mechanistic studies dissecting antibacterial activity from aminoglycoside ototoxicity, the limited but rapid penetration of streptomycin, amikacin, and kanamycin to the sites of TB disease supports the development of analogs with improved efficacy and tolerability.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Animais , Antituberculosos/uso terapêutico , Humanos , Canamicina , Coelhos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico
18.
Antimicrob Agents Chemother ; 65(9): e0002421, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34228540

RESUMO

SQ109 is a novel well-tolerated drug candidate in clinical development for the treatment of drug-resistant tuberculosis (TB). It is the only inhibitor of the MmpL3 mycolic acid transporter in clinical development. No SQ109-resistant mutant has been directly isolated thus far in vitro, in mice, or in patients, which is tentatively attributed to its multiple targets. It is considered a potential replacement for poorly tolerated components of multidrug-resistant TB regimens. To prioritize SQ109-containing combinations with the best potential for cure and treatment shortening, one must understand its contribution against different bacterial populations in pulmonary lesions. Here, we have characterized the pharmacokinetics of SQ109 in the rabbit model of active TB and its penetration at the sites of disease-lung tissue, cellular and necrotic lesions, and caseum. A two-compartment model with first-order absorption and elimination described the plasma pharmacokinetics. At the human-equivalent dose, parameter estimates fell within the ranges published for preclinical species. Tissue concentrations were modeled using an "effect" compartment, showing high accumulation in lung and cellular lesion areas with penetration coefficients in excess of 1,000 and lower passive diffusion in caseum after 7 daily doses. These results, together with the hydrophobic nature and high nonspecific caseum binding of SQ109, suggest that multiweek dosing would be required to reach steady state in caseum and poorly vascularized compartments, similar to bedaquiline. Linking lesion pharmacokinetics to SQ109 potency in assays against replicating, nonreplicating, and intracellular M. tuberculosis showed SQ109 concentrations markedly above pharmacokinetic-pharmacodynamic targets in lung and cellular lesions throughout the dosing interval.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Antituberculosos/uso terapêutico , Humanos , Camundongos , Coelhos , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
19.
Antimicrob Agents Chemother ; 65(9): e0097821, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34228543

RESUMO

Rifampicin is an effective drug for treating tuberculosis (TB) but is not used to treat Mycobacterium abscessus infections due to poor in vitro activity. While rifabutin, another rifamycin, has better anti-M. abscessus activity, its activity is far from the nanomolar potencies of rifamycins against Mycobacterium tuberculosis. Here, we asked (i) why is rifabutin more active against M. abscessus than rifampicin, and (ii) why is rifabutin's anti-M. abscessus activity poorer than its anti-TB activity? Comparative analysis of naphthoquinone- versus naphthohydroquinone-containing rifamycins suggested that the improved activity of rifabutin over rifampicin is linked to its less readily oxidizable naphthoquinone core. Although rifabutin is resistant to bacterial oxidation, metabolite and genetic analyses showed that this rifamycin is metabolized by the ADP-ribosyltransferase ArrMab like rifampicin, preventing it from achieving the nanomolar activity that it displays against M. tuberculosis. Based on the identified dual mechanism of intrinsic rifamycin resistance, we hypothesized that rifamycins more potent than rifabutin should contain the molecule's naphthoquinone core plus a modification that blocks ADP-ribosylation at its C-23. To test these predictions, we performed a blinded screen of a diverse collection of 189 rifamycins and identified two molecules more potent than rifabutin. As predicted, these compounds contained both a more oxidatively resistant naphthoquinone core and C-25 modifications that blocked ADP-ribosylation. Together, this work revealed dual bacterial metabolism as the mechanism of intrinsic resistance of M. abscessus to rifamycins and provides proof of concept for the repositioning of rifamycins for M. abscessus disease by developing derivatives that resist both bacterial oxidation and ADP-ribosylation.


Assuntos
Mycobacterium abscessus , Rifamicinas , ADP-Ribosilação , Testes de Sensibilidade Microbiana , Rifabutina/farmacologia , Rifamicinas/farmacologia
20.
Clin Microbiol Rev ; 33(3)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32238365

RESUMO

Caseum, the central necrotic material of tuberculous lesions, is a reservoir of drug-recalcitrant persisting mycobacteria. Caseum is found in closed nodules and in open cavities connecting with an airway. Several commonly accepted characteristics of caseum were established during the preantibiotic era, when autopsies of deceased tuberculosis (TB) patients were common but methodologies were limited. These pioneering studies generated concepts such as acidic pH, low oxygen tension, and paucity of nutrients being the drivers of nonreplication and persistence in caseum. Here we review widely accepted beliefs about the caseum-specific stress factors thought to trigger the shift of Mycobacterium tuberculosis to drug tolerance. Our current state of knowledge reveals that M. tuberculosis is faced with a lipid-rich diet rather than nutrient deprivation in caseum. Variable caseum pH is seen across lesions, possibly transiently acidic in young lesions but overall near neutral in most mature lesions. Oxygen tension is low in the avascular caseum of closed nodules and high at the cavity surface, and a gradient of decreasing oxygen tension likely forms toward the cavity wall. Since caseum is largely made of infected and necrotized macrophages filled with lipid droplets, the microenvironmental conditions encountered by M. tuberculosis in foamy macrophages and in caseum bear many similarities. While there remain a few knowledge gaps, these findings constitute a solid starting point to develop high-throughput drug discovery assays that combine the right balance of oxygen tension, pH, lipid abundance, and lipid species to model the profound drug tolerance of M. tuberculosis in caseum.


Assuntos
Farmacorresistência Bacteriana , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Tuberculose/patologia , Animais , Antituberculosos/farmacologia , Granuloma/microbiologia , Granuloma/patologia , Cobaias , Humanos , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Neutrófilos/microbiologia , Neutrófilos/patologia , Coelhos , Estresse Fisiológico , Tuberculose/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...