Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16566, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019931

RESUMO

Biologically mediated synthesis of nanomaterials has emerged as an ecologically benign and biocompatible approach. Our study explores enzymatic synthesis, utilizing α-amylase to synthesize ZnO nanoflowers (ZnO-NFs). X-ray diffraction and energy-dispersive X-ray spectroscopy revealed crystal structure and elemental composition. Dynamic light scattering analysis indicates that ZnO-NFs possess a size of 101 nm. Transmission electron microscopy showed a star-shaped morphology of ZnO-NFs with petal-like structures. ZnO-NFs exhibit potent photocatalytic properties, degrading 90% eosin, 87% methylene blue, and 81% reactive red dyes under UV light, with kinetics fitting the Langmuir-Hinshelwood pseudo-first-order rate law. The impact of pH and interfering substances on dye degradation was explored. ZnO-NFs display efficient bacteriocidal activity against different Gram-positive and negative strains, antibiofilm potential (especially with P. aeruginosa), and hemocompatibility up to 600 ppm, suggesting versatile potential in healthcare and environmental remediation applications.


Assuntos
Química Verde , Óxido de Zinco , alfa-Amilases , Óxido de Zinco/química , Óxido de Zinco/farmacologia , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Química Verde/métodos , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Biomimética/métodos , Humanos
2.
ACS Appl Bio Mater ; 7(5): 3164-3178, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38722774

RESUMO

Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.


Assuntos
Antibacterianos , Biofilmes , Catecol Oxidase , Tamanho da Partícula , Biofilmes/efeitos dos fármacos , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Catecol Oxidase/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Simulação de Acoplamento Molecular , Escherichia coli/efeitos dos fármacos
3.
Enzyme Microb Technol ; 176: 110422, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402827

RESUMO

The utilisation of carbonic anhydrase (CA) in CO2 sequestration is becoming prominent as an efficient, environment friendly and rapid catalyst for capturing CO2 from industrial emissions. However, the application of CA enzyme in soluble form is constrained due to its poor stability in operational conditions of CO2 capture and also production cost of the enzyme. Addressing these limitations, the present study focuses on the surface display of CA from Bacillus halodurans (BhCA) on E coli aiming to contribute to the cost-effectiveness of carbon capture through CA technology. This involved the fusion of the BhCA-encoding gene with the adhesion molecule involved in diffuse adherence (AIDA-I) autotransporter, resulting in the efficient display of BhCA (595 ± 60 U/gram dry cell weight). Verification of the surface display of BhCA was accomplished by conjugating with FITC labelled anti-his antibody followed by fluorescence-activated cell sorting (FACS) and cellular fractionation in conjunction with zymography. Biochemical characterisation of whole-cell biocatalyst revealed a noteworthy enhancement in thermostability, improvement in the thermostability with T1/2 of 90 ± 1.52 minutes at 50 ˚C, 36 ± 2.51 minutes at 60 ˚C and18 ± 1.52 minutes at 80˚C. Surface displayed BhCA displayed remarkable reusability retaining 100% activity even after 15 cycles. Surface displayed BhCA displayed highly alkali stable nature like free counterpart in solution. The alkali stability of the surface-displayed BhCA was comparable to its free counterpart in solution. Furthermore, the study investigated the impact of different metal ions, modulators, and detergents on the whole-cell biocatalysts. The present work represents the first report on surface display of CA utilising the AIDA-1 autotransporter.


Assuntos
Anidrases Carbônicas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Álcalis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...