Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Virol ; 96(23): e0145622, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36377873

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-oncogenic herpesvirus, and both lytic and latent infections play important roles in its pathogenesis and tumorigenic properties. Multiple cellular pathways and diverse mediators are hijacked by viral proteins and are used to support KSHV lytic replication. In previous studies, we revealed that KSHV ORF45 promoted KSHV transcription and translation by inducing sustained p90 ribosomal S6 kinase (RSK) activation and the phosphorylation of its substrates c-Fos and eIF4B. However, the cellular mediators required for lytic replication remain largely unknown. Here, we reveal that ORF45 activates eIF2α phosphorylation and ATF4 translation and then upregulates the expression of lysosome-associated membrane protein 3 (LAMP3) in an ATF4-dependent manner during KSHV lytic replication. Consequently, LAMP3 promotes Akt and ERK activation and then facilitates lytic gene expression and virion production. Furthermore, ATF4 enhances lytic replication through LAMP3, and LAMP3 acts in an ATF4-independent manner. Our findings suggest that the ATF4-LAMP3 axis is upregulated by ORF45 through ER stress activation during the KSHV lytic life cycle and, in turn, facilitates optimal lytic replication. IMPORTANCE The lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) reprograms cellular transcription and translation to generate viral proteins and virion particles. Here, we show that the mediator of ER stress ATF4 and the expression of the downstream gene LAMP3 are upregulated by ORF45 during lytic replication. Consequently, increased LAMP3 expression activates Akt and ERK and promotes lytic replication. Although several UPR transcription factors are able to promote KSHV lytic replication, the proviral effect of ATF4 on lytic replication is attenuated by LAMP3 silencing, whereas the effect of LAMP3 does not directly require ATF4 expression, indicating that LAMP3 primarily exerts effects on KSHV lytic replication downstream of ATF4 and ER stress. Taken together, our findings suggest that the ORF45-upregulated ATF4-LAMP3 axis plays an essential role in KSHV lytic replication.


Assuntos
Fator 4 Ativador da Transcrição , Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Proteínas de Membrana Lisossomal , Replicação Viral , Linhagem Celular , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Proteínas Virais/genética , Proteínas Virais/metabolismo , Humanos , Fator 4 Ativador da Transcrição/genética , Proteínas de Membrana Lisossomal/genética
2.
Viruses ; 14(8)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36016343

RESUMO

The nucleolus is a subnuclear compartment whose primary function is the biogenesis of ribosomal subunits. Certain viral infections affect the morphology and composition of the nucleolar compartment and influence ribosomal RNA (rRNA) transcription and maturation. However, no description of nucleolar morphology and function during infection with Kaposi's sarcoma-associated herpesvirus (KSHV) is available to date. Using immunofluorescence microscopy, we documented extensive destruction of the nuclear and nucleolar architecture during the lytic reactivation of KSHV. This was manifested by the redistribution of key nucleolar proteins, including the rRNA transcription factor UBF. Distinct delocalization patterns were evident; certain nucleolar proteins remained together whereas others dissociated, implying that nucleolar proteins undergo nonrandom programmed dispersion. Significantly, the redistribution of UBF was dependent on viral DNA replication or late viral gene expression. No significant changes in pre-rRNA levels and no accumulation of pre-rRNA intermediates were found by RT-qPCR and Northern blot analysis. Furthermore, fluorescent in situ hybridization (FISH), combined with immunofluorescence, revealed an overlap between Fibrillarin and internal transcribed spacer 1 (ITS1), which represents the primary product of the pre-rRNA, suggesting that the processing of rRNA proceeds during lytic reactivation. Finally, small changes in the levels of pseudouridylation (Ψ) and 2'-O-methylation (Nm) were documented across the rRNA; however, none were localized to the functional domain. Taken together, our results suggest that despite dramatic changes in the nucleolar organization, rRNA transcription and processing persist during lytic reactivation of KSHV. Whether the observed nucleolar alterations favor productive infection or signify cellular anti-viral responses remains to be determined.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Replicação do DNA , DNA Viral , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Humanos , Hibridização in Situ Fluorescente , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores de RNA , Replicação Viral
4.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769420

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-related virus which engages in two forms of infection: latent and lytic. Latent infection allows the virus to establish long-term persistent infection, whereas the lytic cycle is needed for the maintenance of the viral reservoir and for virus spread. By using recombinant KSHV viruses encoding mNeonGreen and mCherry fluorescent proteins, we show that various cell types that are latently-infected with KSHV can be superinfected, and that the new incoming viruses establish latent infection. Moreover, we show that latency establishment is enhanced in superinfected cells compared to primary infected ones. Further analysis revealed that cells that ectopically express the major latency protein of KSHV, LANA-1, prior to and during infection exhibit enhanced establishment of latency, but not cells expressing LANA-1 fragments. This observation supports the notion that the expression level of LANA-1 following infection determines the efficiency of latency establishment and avoids loss of viral genomes. These findings imply that a host can be infected with more than a single viral genome and that superinfection may support the maintenance of long-term latency.


Assuntos
Antígenos Virais/metabolismo , Herpesvirus Humano 8/fisiologia , Proteínas Nucleares/metabolismo , Sarcoma de Kaposi/virologia , Superinfecção/virologia , Linhagem Celular , Genoma Viral , Humanos , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/patologia , Superinfecção/genética , Superinfecção/patologia , Latência Viral
6.
Viruses ; 13(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807444

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-related herpesvirus. Like other herpesviruses, the KSHV icosahedral capsid includes a portal vertex, composed of 12 protein subunits encoded by open reading frame (ORF) 43, which enables packaging and release of the viral genome into the nucleus through the nuclear pore complex (NPC). Capsid vertex-specific component (CVSC) tegument proteins, which directly mediate docking at the NPCs, are organized on the capsid vertices and are enriched on the portal vertex. Whether and how the portal vertex is selected for docking at the NPC is unknown. Here, we investigated the docking of incoming ORF43-null KSHV capsids at the NPCs, and describe a significantly lower fraction of capsids attached to the nuclear envelope compared to wild-type (WT) capsids. Like WT capsids, nuclear envelope-associated ORF43-null capsids co-localized with different nucleoporins (Nups) and did not detach upon salt treatment. Inhibition of nuclear export did not alter WT capsid docking. As ORF43-null capsids exhibit lower extent of association with the NPCs, we conclude that although not essential, the portal has a role in mediating the interaction of the CVSC proteins with Nups, and suggest a model whereby WT capsids can dock at the nuclear envelope through a non-portal penton vertex, resulting in an infection 'dead end'.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Poro Nuclear/metabolismo , Montagem de Vírus , Linhagem Celular Tumoral , Microscopia Crioeletrônica , DNA Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fases de Leitura Aberta/genética
7.
Neuromolecular Med ; 23(4): 561-571, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33660221

RESUMO

The current SARS-CoV-2 outbreak, which causes COVID-19, is particularly devastating for individuals with chronic medical conditions, in particular those with Down Syndrome (DS) who often exhibit a higher prevalence of respiratory tract infections, immune dysregulation and potential complications. The incidence of Alzheimer's disease (AD) is much higher in DS than in the general population, possibly increasing further the risk of COVID-19 infection and its complications. Here we provide a biological overview with regard to specific susceptibility of individuals with DS to SARS-CoV-2 infection as well as data from a recent survey on the prevalence of COVID-19 among them. We see an urgent need to protect people with DS, especially those with AD, from COVID-19 and future pandemics and focus on developing protective measures, which also include interventions by health systems worldwide for reducing the negative social effects of long-term isolation and increased periods of hospitalization.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Suscetibilidade a Doenças , Síndrome de Down/epidemiologia , Adolescente , Adulto , Doença de Alzheimer/complicações , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/imunologia , COVID-19/complicações , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Comorbidade , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/virologia , Síndrome de Down/complicações , Síndrome de Down/imunologia , Feminino , Hospitalização , Humanos , Sistema Imunitário/anormalidades , Incidência , Masculino , Pandemias/prevenção & controle , Prevalência , Fatores de Risco , Vacinação/métodos
8.
Virol J ; 18(1): 56, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731154

RESUMO

BACKGROUND: Kaposi's sarcoma-associated herpesvirus (KSHV) is a transforming gammaherpesvirus. Like other herpesviruses, KSHV infection is for life long and there is no treatment that can cure patients from the virus. In addition, there is an urgent need to target viral genes to study their role during the infection cycle. The CRISPR-Cas9 technology offers a means to target viral genomes and thus may offer a novel strategy for viral cure as well as for better understanding of the infection process. We evaluated the suitability of this platform for the targeting of KSHV. METHODS: We have used the recombinat KSHV BAC16 genome, which contains an expression cassette encoding hygromycin-resistance and a GFP marker gene. Three genes were targeted: gfp, which serves as a marker for infection; orf45 encoding a lytic viral protein; and orf73, encoding LANA which is crucial for latent infection. The fraction of cells expressing GFP, viral DNA levels and LANA expression were monitored and viral genomes were sequenced. RESULTS: We found that KSHV episomes can be targeted by CRISPR-Cas9. Interestingly, the quantity of KSHV DNA declined, even when target sites were not functionally important for latency. In addition, we show that antibiotic selection, used to maintain infection, interferes with the outcome of targeting. CONCLUSIONS: Our study provides insights into the use of this fundamental approach for the study and manipulation of KSHV. It provides guidelines for the targeting CRISPR-Cas9 to the viral genome and for outcomes interpretation.


Assuntos
Sistemas CRISPR-Cas , Genoma Viral , Infecções por Herpesviridae , Herpesvirus Humano 8 , Antígenos Virais , Genes Reporter , Proteínas de Fluorescência Verde , Herpesvirus Humano 8/genética , Humanos , Proteínas Nucleares/metabolismo , Latência Viral
9.
Nat Commun ; 12(1): 220, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431866

RESUMO

Absent pharmaceutical interventions, social distancing, lock-downs and mobility restrictions remain our prime response in the face of epidemic outbreaks. To ease their potentially devastating socioeconomic consequences, we propose here an alternating quarantine strategy: at every instance, half of the population remains under lockdown while the other half continues to be active - maintaining a routine of weekly succession between activity and quarantine. This regime minimizes infectious interactions, as it allows only half of the population to interact for just half of the time. As a result it provides a dramatic reduction in transmission, comparable to that achieved by a population-wide lockdown, despite sustaining socioeconomic continuity at  ~50% capacity. The weekly alternations also help address the specific challenge of COVID-19, as their periodicity synchronizes with the natural SARS-CoV-2 disease time-scales, allowing to effectively isolate the majority of infected individuals precisely at the time of their peak infection.


Assuntos
COVID-19/prevenção & controle , Pandemias/prevenção & controle , Quarentena , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/transmissão , Controle de Doenças Transmissíveis/métodos , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Distanciamento Físico , Rede Social , Fatores Socioeconômicos
10.
Cells ; 9(9)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854341

RESUMO

RNA-binding proteins, particularly splicing factors, localize to sub-nuclear domains termed nuclear speckles. During certain viral infections, as the nucleus fills up with replicating virus compartments, host cell chromatin distribution changes, ending up condensed at the nuclear periphery. In this study we wished to determine the fate of nucleoplasmic RNA-binding proteins and nuclear speckles during the lytic cycle of the Kaposi's sarcoma associated herpesvirus (KSHV). We found that nuclear speckles became fewer and dramatically larger, localizing at the nuclear periphery, adjacent to the marginalized chromatin. Enlarged nuclear speckles contained splicing factors, whereas other proteins were nucleoplasmically dispersed. Polyadenylated RNA, typically found in nuclear speckles under regular conditions, was also found in foci separated from nuclear speckles in infected cells. Poly(A) foci did not contain lncRNAs known to colocalize with nuclear speckles but contained the poly(A)-binding protein PABPN1. Examination of the localization of spliced viral RNAs revealed that some spliced transcripts could be detected within the nuclear speckles. Since splicing is required for the maturation of certain KSHV transcripts, we suggest that the infected cell does not dismantle nuclear speckles but rearranges their components at the nuclear periphery to possibly serve in splicing and transport of viral RNAs into the cytoplasm.


Assuntos
Núcleo Celular/virologia , Herpesvirus Humano 8/patogenicidade , Sarcoma de Kaposi/genética , Humanos , Proteínas de Ligação a RNA/metabolismo
11.
Rambam Maimonides Med J ; 11(3)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32792049

RESUMO

At the time of writing, in July 2020, the recently emerging SARS-CoV-2 pandemic has attracted major attention to viral diseases, in particular coronaviruses. In spite of alarming molecular evidence, documentation of interspecies transmission in livestock, and the emergence of two new and relatively virulent human coronaviruses within a 10-year period, many gaps remain in the study and understanding of this family of viruses. This paper provides an overview of our knowledge regarding the coronavirus family, while highlighting their key biological properties in the context of our overall understanding of viral diseases.

12.
Open Forum Infect Dis ; 6(10): ofz337, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31660331

RESUMO

Familial clustering of classic Kaposi sarcoma (CKS) is rare with, approximately 100 families reported to date. We studied 2 consanguineous families, 1 Iranian and 1 Israeli, with multiple cases of adult CKS and without overt underlying immunodeficiency. We performed genome-wide linkage analysis and whole-genome sequencing to discover the putative genetic cause for predisposition. A 9-kb homozygous intronic deletion in RP11-259O2.1 in the Iranian family and 2 homozygous variants, 1 in SCUBE2 and the other in CDHR5, in the Israeli family were identified as possible candidates. The presented variants provide a robust starting point for validation in independent samples.

13.
Virology ; 529: 205-215, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30735904

RESUMO

Herpesvirus capsid assembly involves cleavage and packaging of the viral genome. The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 43 (orf43) encodes a putative portal protein. The portal complex functions as a gate through which DNA is packaged into the preformed procapsids, and is injected into the cell nucleus upon infection. The amino acid sequence of the portal proteins is conserved among herpesviruses. Here, we generated an antiserum to ORF43 and determined late expression kinetics of ORF43 along with its nuclear localization. We generated a recombinant KSHV mutant, which fails to express ORF43 (BAC16-ORF43-null). Assembled capsids were observed upon lytic induction of this virus; however, the released virions lacked viral DNA and thus could not establish infection. Ectopic expression of ORF43 rescued the ability to produce infectious particles. ORF43 antiserum and the recombinant ORF43-null virus can provide an experimental system for further studies of the portal functions and its interactions.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Proteínas do Capsídeo , DNA Viral , Genoma Viral , Células HEK293 , Humanos , Fases de Leitura Aberta , Proteínas Virais/genética , Vírion , Replicação Viral
14.
Mediterr J Hematol Infect Dis ; 10(1): e2018061, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416693

RESUMO

The spectrum of lymphoproliferative disorders linked to human herpesvirus 8 (HHV-8) infection has constantly been increasing since the discovery of its first etiologic association with primary effusion lymphoma (PEL). PEL is a rapidly progressing non-Hodgkin's B-cell lymphoma that develops in body cavities in an effusional form. With the increase in the overall survival of PEL patients, as well as the introduction of HHV-8 surveillance in immunocompromised patients, the extracavitary, solid counterpart of PEL was later identified. Moreover, virtually all plasmablastic variants of multicentric Castleman's disease (MCD) developing in HIV-1-infected individuals harbor HHV-8, providing a strong etiologic link between MCD and this oncogenic herpesvirus. Two other pathologic conditions develop in HIV-1-infected persons concomitantly with MCD: MCD with plasmablastic clusters and HHV-8-positive diffuse large B-cell lymphoma not otherwise specified (HHV-8+ DLBCL NOS), the first likely representing an intermediate stage preceding the full neoplastic form. MCD in leukemic phase has also been described, albeit much less commonly. The germinotropic lymphoproliferative disorder (GLPD) may resemble extracavitary PEL, but develops in immune competent HHV8-infected individuals, and, unlike the other disorders, it responds well to conventional therapies. Almost all HHV-8-mediated lymphoproliferative disorders are the result of an interaction between HHV-8 infection and a dysregulated immunological system, leading to the formation of inflammatory niches in which B cells, at different developmental stages, are infected, proliferate and may eventually shift from a polyclonal state to a monoclonal/neoplastic disorder. Herein, we describe the association between HHV-8 and lymphoproliferative disorders and highlight the predominant distinctive features of each disease.

15.
Oncotarget ; 9(17): 13822-13833, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568397

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus exhibiting two forms of infection, latent and lytic. Latent infection is abortive and allows the virus to establish lifelong infection, while lytic infection is productive, and is needed for virus dissemination within the host and between hosts. Latent infection may reactivate and switch towards the lytic cycle. This switch is a critical step in the maintenance of long-term infection and for the development of KSHV-related neoplasms. In this study, we examined the effect of nucleolar stress, manifested by failure in ribosome biogenesis or function and often coupled with p53 activation, on lytic reactivation of KSHV. To this end, we induced nucleolar stress by treatment with Actinomycin D, CX-5461 or BMH-21. Treatment with these compounds alone did not induce the lytic cycle. However, enhancement of the lytic cycle by these compounds was evident when combined with expression of the viral protein K-Rta. Further experiments employing combined treatments with Nutlin-3, knock-down of p53 and isogenic p53+/+ and p53-/- cells indicated that the enhancement of lytic reactivation by nucleolar stress does not depend on p53. Thus, our study identifies nucleolar stress as a novel regulator of KSHV infection, which synergizes with K-Rta expression to increase lytic reactivation. This suggests that certain therapeutic interventions, which induce nucleolar stress, may affect the outcome of KSHV infection.

16.
Bioconjug Chem ; 28(4): 1115-1122, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28177606

RESUMO

The study of graphene-based antivirals is still at a nascent stage and the photothermal antiviral properties of graphene have yet to be studied. Here, we design and synthesize sulfonated magnetic nanoparticles functionalized with reduced graphene oxide (SMRGO) to capture and photothermally destroy herpes simplex virus type 1 (HSV-1). Graphene sheets were uniformly anchored with spherical magnetic nanoparticles (MNPs) of varying size between ∼5 and 25 nm. Fourier-transform infrared spectroscopy (FT-IR) confirmed the sulfonation and anchoring of MNPs on the graphene sheets. Upon irradiation of the composite with near-infrared light (NIR, 808 nm, 7 min), SMRGO (100 ppm) demonstrated superior (∼99.99%) photothermal antiviral activity. This was probably due to the capture efficiency, unique sheet-like structure, high surface area, and excellent photothermal properties of graphene. In addition, electrostatic interactions of MNPs with viral particles appear to play a vital role in the inhibition of viral infection. These results suggest that graphene composites may help to combat viral infections including, but not only, HSV-1.


Assuntos
Grafite/uso terapêutico , Herpesvirus Humano 1/isolamento & purificação , Nanopartículas Metálicas/uso terapêutico , Fototerapia/métodos , Animais , Antivirais , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Ácidos Sulfônicos/química , Células Vero , Vírion/química , Viroses/prevenção & controle
17.
Virology ; 499: 91-98, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27639575

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is implicated in the etiology of several human malignancies. KSHV open reading frame (orf) 35 encodes a conserved gammaherpesvirus protein with an, as yet, unknown function. Employing the bacterial artificial chromosome (BAC) system, we generated a recombinant viral clone that fails to express ORF35 (BAC16-ORF35-stop) but preserves intact adjacent and overlapping reading frames. Using this construct, we studied the role of this previously uncharacterized gene product during lytic reactivation of KSHV. Upon lytic reactivation, the ORF35-stop recombinant virus displayed significantly reduced lytic viral gene expression, viral DNA replication, and progeny virus production as compared to control wild-type virus. Exogenous expression of ORF35-Flag reversed the effects of ORF35 deficiency. These results demonstrate that ORF35 is important for efficient lytic virus reactivation.


Assuntos
Herpesvirus Humano 8/fisiologia , Fases de Leitura Aberta , Proteínas Virais/genética , Ativação Viral , Replicação Viral , Linhagem Celular , Expressão Gênica , Regulação Viral da Expressão Gênica , Ordem dos Genes , Teste de Complementação Genética , Vetores Genéticos/genética , Humanos , Mutação , Proteínas Virais/metabolismo
18.
J Virol ; 89(10): 5298-307, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740992

RESUMO

UNLABELLED: The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 16 (orf16) encodes a viral Bcl-2 (vBcl-2) protein which shares sequence and functional homology with the Bcl-2 family. Like its cellular homologs, vBcl-2 protects various cell types from apoptosis and can also negatively regulate autophagy. vBcl-2 is transcribed during lytic infection; however, its exact function has not been determined to date. By using bacterial artificial chromosome 16 (BAC16) clone carrying the full-length KSHV genome, we have generated recombinant KSHV mutants that fail to express vBcl-2 or express mCherry-tagged vBcl-2. We show that the vBcl-2 protein is expressed at relatively low levels during lytic induction and that a lack of vBcl-2 largely reduces the efficiency of KSHV reactivation in terms of lytic gene expression, viral DNA replication, and production of infectious particles. In contrast, the establishment of latency was not affected by the absence of vBcl-2. Our findings suggest an important role for vBcl-2 during initial phases of lytic reactivation and/or during subsequent viral propagation. Given the known functions of vBcl-2 in regulating apoptosis and autophagy, which involve its direct interaction with cellular proteins and thus require high levels of protein expression, it appears that vBcl-2 may have additional regulatory functions that do not depend on high levels of protein expression. IMPORTANCE: The present study shows for the first time the expression of endogenous vBcl-2 protein in KSHV-infected cell lines and demonstrates the importance of vBcl-2 during the initial phases of lytic reactivation and/or during its subsequent propagation. It is suggested that vBcl-2 has additional regulatory functions beyond apoptosis and autophagy repression that do not depend on high levels of protein expression.


Assuntos
Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/fisiologia , Proteínas Virais/genética , Proteínas Virais/fisiologia , Ativação Viral/genética , Ativação Viral/fisiologia , Sequência de Bases , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , DNA Recombinante/genética , DNA Viral/genética , Expressão Gênica , Genes Virais , Células HEK293 , Herpesvirus Humano 8/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Dados de Sequência Molecular , Mutação , Recombinação Genética , Replicação Viral
19.
J Infect Dis ; 211(11): 1842-51, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25492914

RESUMO

BACKGROUND: Classic Kaposi sarcoma (cKS) is an inflammatory tumor caused by human herpesvirus 8 (HHV-8) commonly observed in elderly men of Mediterranean origin. We studied a Finnish family of 5 affected individuals in 2 generations. Except for atypical mycobacterial infection of the index case, the affected individuals did not have notable histories of infection. METHODS: We performed genome and exome sequencing and mapped shared chromosomal regions to identify genetic predisposition in the family. RESULTS: We identified 12 protein-coding candidate variants that segregated in the 3 affected cousins from whom we had samples. The affected mother of the index case was an obligatory carrier. Among the 12 candidates was a rare heterozygous substitution rs141331848 (c.1337C>T, p.Thr446Ile) in the DNA-binding domain of STAT4. The variant was not present in 242 Finnish control genomes or 180 additional regional controls. Activated T-helper cells from the HHV-8-negative variant carriers showed reduced interferon γ production, compared with age and sex matched wild-type individuals. We screened STAT4 in additional 18 familial KS cases and the variant site from 56 sporadic KS cases but detected no pathogenic mutations. CONCLUSIONS: Our data suggest that STAT4 is a potential cKS-predisposition gene, but further functional and genetic validation is needed.


Assuntos
Predisposição Genética para Doença/genética , Fator de Transcrição STAT4/genética , Sarcoma de Kaposi/genética , Idoso , Sequência de Aminoácidos , Feminino , Ligação Genética , Genoma , Humanos , Interferon gama/imunologia , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Sarcoma de Kaposi/imunologia , Sarcoma de Kaposi/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Linfócitos T
20.
J Virol ; 88(21): 12839-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25165104

RESUMO

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is a cancer-related human virus, classified as a member of the Gammaherpesvirinae subfamily. We report here the construction of a dual fluorescent-tagged KSHV genome (BAC16-mCherry-ORF45), which constitutively expresses green fluorescent protein (GFP) and contains the tegument multifunctional ORF45 protein as a fusion protein with monomeric Cherry fluorescent protein (mCherry). We confirmed that this virus is properly expressed and correctly replicates and that the mCherry-ORF45 protein is incorporated into the virions. Using this labeled virus, we describe the dynamics of mCherry-ORF45 expression and localization in newly infected cells as well as in latently infected cells undergoing lytic induction and show that mCherry can be used to monitor cells undergoing the lytic viral cycle. This virus is likely to enable future studies monitoring the dynamics of viral trafficking and tegumentation during viral ingress and egress. IMPORTANCE: The present study describes the construction and characterization of a new recombinant KSHV genome BAC16 clone which expresses mCherry-tagged ORF45. This virus enables the tracking of cells undergoing lytic infection and can be used to address issues related to the trafficking and maturation pathways of KSHV virions.


Assuntos
Citosol/química , Citosol/virologia , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/análise , Fusão Gênica Artificial , Linhagem Celular , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem/métodos , Latência Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA