Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(10): 8327-8333, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391147

RESUMO

Delafossites, typically denoted by the formula ABO2, are a class of layered materials that exhibit a wide range of electronic and optical properties. Recently, the idea of modifying these delafossites into ordered kagome or honeycomb phases via strategic doping has emerged as a potential way to tailor these properties. In this study, we use high-throughput density functional theory calculations to explore many possible candidate kagome and honeycomb phases by considering dopants selected from the parent compounds of known ternary delafossite oxides from the inorganic crystal structure database. Our results indicate that while A-site in existing delafossites can host a limited range of elemental specifies, and display a low propensity for mixing or ordering, the oxide sub-units in the BO2 much more readily admit guest species. Our study identifies four candidate B-site kagome and fifteen candidate B-site honeycombs with a formation energy more than 50 meV f.u.-1 below other competing phases. The ability to predict and control the formation of these unique structures offers exciting opportunities in materials design, where innovative properties can be engineered through the selection of specific dopants. A number of these constitute novel correlated metals, which may be of interest for subsequent efforts in synthesis. These novel correlated metals may have significant implications for quantum computing, spintronics, and high-temperature superconductivity, thus inspiring future experimental synthesis and characterization of these proposed materials.

2.
Sci Rep ; 13(1): 6703, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185382

RESUMO

The properties of [Formula: see text] (M: 3d transition metal) perovskite crystals are significantly dependent on point defects, whether introduced accidentally or intentionally. The most studied defects in La-based perovskites are the oxygen vacancies and doping impurities on the La and M sites. Here, we identify that intrinsic antisite defects, the replacement of La by the transition metal, M, can be formed under M-rich and O-poor growth conditions, based on results of an accurate many-body ab initio approach. Our fixed-node diffusion Monte Carlo (FNDMC) calculations of [Formula: see text] ([Formula: see text], Fe, and Co) find that such antisite defects can have low formation energies and are magnetized. Complementary density functional theory (DFT)-based calculations show that Mn antisite defects in [Formula: see text] may cause the p-type electronic conductivity. These features could affect spintronics, redox catalysis, and other broad applications. Our bulk validation studies establish that FNDMC reproduces the antiferromagnetic state of [Formula: see text], whereas DFT with PBE (Perdew-Burke-Ernzerhof), SCAN (strongly constrained and appropriately normed), and the LDA+U (local density approximation with Coulomb U) functionals all favor ferromagnetic states, at variance with experiment.

3.
J Phys Chem Lett ; 14(14): 3553-3560, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37017431

RESUMO

Previous works have controversially claimed near-room-temperature ferromagnetism in two-dimensional (2D) VSe2, with conflicting results throughout the literature. These discrepancies in magnetic properties between both phases (T and H) of 2D VSe2 are most likely due to the structural parameters being coupled to the magnetic properties. Specifically, both phases have a close lattice match and similar total energies, which makes it difficult to determine which phase is being observed experimentally. In this study, we used a combination of density functional theory, highly accurate diffusion Monte Carlo (DMC), and a surrogate Hessian line-search optimization technique to resolve the previously reported discrepancy in structural parameters and relative phase stability. With DMC accuracy, we determined the free-standing geometry of both phases and constructed a phase diagram. Our findings demonstrate the successes of the DMC method coupled with the surrogate Hessian structural optimization technique when applied to a 2D magnetic system.

4.
Phys Rev Lett ; 129(23): 235701, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563221

RESUMO

Understanding the behavior of defects in the complex oxides is key to controlling myriad ionic and electronic properties in these multifunctional materials. The observation of defect dynamics, however, requires a unique probe-one sensitive to the configuration of defects as well as its time evolution. Here, we present measurements of oxygen vacancy ordering in epitaxial thin films of SrCoO_{x} and the brownmillerite-perovskite phase transition employing x-ray photon correlation spectroscopy. These and associated synchrotron measurements and theory calculations reveal the close interaction between the kinetics and the dynamics of the phase transition, showing how spatial and temporal fluctuations of heterointerface evolve during the transformation process. The energetics of the transition are correlated with the behavior of oxygen vacancies, and the dimensionality of the transformation is shown to depend strongly on whether the phase is undergoing oxidation or reduction. The experimental and theoretical methods described here are broadly applicable to in situ measurements of dynamic phase behavior and demonstrate how coherence may be employed for novel studies of the complex oxides as enabled by the arrival of fourth-generation hard x-ray coherent light sources.

5.
J Chem Phys ; 155(19): 194112, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34800964

RESUMO

The study of alloys using computational methods has been a difficult task due to the usually unknown stoichiometry and local atomic ordering of the different structures experimentally. In order to combat this, first-principles methods have been coupled with statistical methods such as the cluster expansion formalism in order to construct the energy hull diagram, which helps to determine if an alloyed structure can exist in nature. Traditionally, density functional theory (DFT) has been used in such workflows. In this paper, we propose to use chemically accurate many-body variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods to construct the energy hull diagram of an alloy system due to the fact that such methods have a weaker dependence on the starting wavefunction and density functional, scale similarly to DFT with the number of electrons, and have had demonstrated success for a variety of materials. To carry out these simulations in a high-throughput manner, we propose a method called Jastrow sharing, which involves recycling the optimized Jastrow parameters between alloys with different stoichiometries. We show that this eliminates the need for extra VMC Jastrow optimization calculations and results in significant computational cost savings (on average 1/4 savings of total computational time). Since it is a novel post-transition metal chalcogenide alloy series that has been synthesized in its few-layer form, we used monolayer GaSxSe1-x as a case study for our workflow. By extensively testing our Jastrow sharing procedure for monolayer GaSxSe1-x and quantifying the cost savings, we demonstrate how a pathway toward chemically accurate high-throughput simulations of alloys can be achieved using many-body VMC and DMC methods.

6.
J Chem Phys ; 153(15): 154704, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33092365

RESUMO

Two-dimensional (2D) post-transition metal chalcogenides (PTMCs) have attracted attention due to their suitable bandgaps and lower exciton binding energies, making them more appropriate for electronic, optical, and water-splitting devices than graphene and monolayer transition metal dichalcogenides. Of the predicted 2D PTMCs, GaSe has been reliably synthesized and experimentally characterized. Despite this fact, quantities such as lattice parameters and band character vary significantly depending on which density functional theory (DFT) functional is used. Although many-body perturbation theory (GW approximation) has been used to correct the electronic structure and obtain the excited state properties of 2D GaSe, and solving the Bethe-Salpeter equation (BSE) has been used to find the optical gap, we find that the results depend strongly on the starting wavefunction. In an attempt to correct these discrepancies, we employed the many-body Diffusion Monte Carlo (DMC) method to calculate the ground and excited state properties of GaSe because DMC has a weaker dependence on the trial wavefunction. We benchmark these results with available experimental data, DFT [local-density approximation, Perdew-Burke-Ernzerhof (PBE), strongly constrained and appropriately normed (SCAN) meta-GGA, and hybrid (HSE06) functionals] and GW-BSE (using PBE and SCAN wavefunctions) results. Our findings confirm that monolayer GaSe is an indirect gap semiconductor (Γ-M) with a quasiparticle electronic gap in close agreement with experiment and low exciton binding energy. We also benchmark the optimal lattice parameter, cohesive energy, and ground state charge density with DMC and various DFT methods. We aim to present a terminal theoretical benchmark for pristine monolayer GaSe, which will aid in the further study of 2D PTMCs using DMC methods.

7.
J Chem Phys ; 152(17): 174105, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384844

RESUMO

We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing the accuracy. Advances in real space methods include techniques for accurate computation of bandgaps and for systematically improving the nodal surface of ground state wavefunctions. Results of these calculations can be used to validate application of more approximate electronic structure methods, including GW and density functional based techniques. To provide an improved foundation for these calculations, we utilize a new set of correlation-consistent effective core potentials (pseudopotentials) that are more accurate than previous sets; these can also be applied in quantum-chemical and other many-body applications, not only QMC. These advances increase the efficiency, accuracy, and range of properties that can be studied in both molecules and materials with QMC and QMCPACK.

8.
J Phys Chem Lett ; 10(1): 67-74, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30418779

RESUMO

Accurate excitation energies of localized defects have been a long-standing problem for electronic structure calculation methods. Using Mn4+-doped solids as our proof of principle, we show that diffusion quantum Monte Carlo (DMC) is able to predict phosphorescence emission energies within statistical error. To demonstrate the generality of our DMC approach for other possible localized defects, we conduct charge density analyses using DMC and density functional theory (DFT). We also identify a new material with an emission energy of 1.97(8) eV, which is close to the optimum of 2.03 eV for a red-emitting phosphor. To our knowledge, our work is the first report on studying excitation energies of a transition metal impurity using an ab initio many-body electronic structure method. In contrast, semilocal and hybrid-DFT largely underestimates, and fails to reproduce, some of the trends in the emission energies. Our work underscores the importance of an accurate account of exchange, correlation, and excitonic effects for localized excitations in defective solids.

9.
J Chem Theory Comput ; 13(5): 1943-1951, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28358499

RESUMO

High-throughput calculations based on density functional theory (DFT) methods have been widely implemented in the scientific community. However, depending on both the properties of interest as well as particular chemical/structural phase space, accuracy even for correct trends remains a key challenge for DFT. In this work, we evaluate the use of quantum Monte Carlo (QMC) to calculate material formation energies in a high-throughput environment. We test the performance of automated QMC calculations on 21 compounds with high quality reference data from the Committee on Data for Science and Technology (CODATA) thermodynamic database. We compare our approach to different DFT methods as well as different pseudopotentials, showing that errors in QMC calculations can be progressively improved especially when correct pseudopotentials are used. We determine a set of accurate pseudopotentials in QMC via a systematic investigation of multiple available pseudopotential libraries. We show that using this simple automated recipe, QMC calculations can outperform DFT calculations over a wide set of materials. Out of 21 compounds tested, chemical accuracy has been obtained in formation energies of 11 structures using our QMC recipe, compared to none using DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...