Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813748

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of the immune system. Approximately 20% of paediatric and 50% of adult T-ALL patients have refractory disease or relapse and die from the disease. To improve patient outcome new therapeutics are needed. With the aim to identify new therapeutic targets, we combined the analysis of T-ALL gene expression and metabolism to identify the metabolic adaptations that T-ALL cells exhibit. We found that glutamine uptake is essential for T-ALL proliferation. Isotope tracing experiments showed that glutamine fuels aspartate synthesis through the TCA cycle and that glutamine and glutamine-derived aspartate together supply three nitrogen atoms in purines and all but one atom in pyrimidine rings. We show that the glutamate-aspartate transporter EAAT1 (SLC1A3), which is normally expressed in the central nervous system, is crucial for glutamine conversion to aspartate and nucleotides and that T-ALL cell proliferation depends on EAAT1 function. Through this work, we identify EAAT1 as a novel therapeutic target for T-ALL treatment.

2.
Cell Death Dis ; 15(5): 382, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821960

RESUMO

Impairment of autophagy leads to an accumulation of misfolded proteins and damaged organelles and has been implicated in plethora of human diseases. Loss of autophagy in actively respiring cells has also been shown to trigger metabolic collapse mediated by the depletion of nicotinamide adenine dinucleotide (NAD) pools, resulting in cell death. Here we found that the deficit in the autophagy-NAD axis underpins the loss of viability in cell models of a neurodegenerative lysosomal storage disorder, Niemann-Pick type C1 (NPC1) disease. Defective autophagic flux in NPC1 cells resulted in mitochondrial dysfunction due to impairment of mitophagy, leading to the depletion of both the reduced and oxidised forms of NAD as identified via metabolic profiling. Consequently, exhaustion of the NAD pools triggered mitochondrial depolarisation and apoptotic cell death. Our chemical screening identified two FDA-approved drugs, celecoxib and memantine, as autophagy activators which effectively restored autophagic flux, NAD levels, and cell viability of NPC1 cells. Of biomedical relevance, either pharmacological rescue of the autophagy deficiency or NAD precursor supplementation restored NAD levels and improved the viability of NPC1 patient fibroblasts and induced pluripotent stem cell (iPSC)-derived cortical neurons. Together, our findings identify the autophagy-NAD axis as a mechanism of cell death and a target for therapeutic interventions in NPC1 disease, with a potential relevance to other neurodegenerative disorders.


Assuntos
Autofagia , Células-Tronco Pluripotentes Induzidas , NAD , Doença de Niemann-Pick Tipo C , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Humanos , Autofagia/efeitos dos fármacos , NAD/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Memantina/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos
3.
Genes Dev ; 38(1-2): 70-94, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316520

RESUMO

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.


Assuntos
Melanoma , Humanos , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Dano ao DNA , Instabilidade Genômica/genética , DNA
4.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076943

RESUMO

Phagosome maturation arrest (PMA) imposed by Mycobacterium tuberculosis ( Mtb ) is a classic tool that helps Mtb evade macrophage anti-bacterial responses. The exclusion of RAB7, a small GTPase, from Mtb -phagosomes underscores PMA. Here we report an unexpected mechanism that triggers crosstalk between the mitochondrial quality control (MQC) and the phagosome maturation pathways that reverses the PMA. CRISPR-mediated p62/SQSTM1 depletion ( p62 KD ) blocks mitophagy flux without impacting mitochondrial quality. In p62 KD cells, Mtb growth and survival are diminished, mainly through witnessing an increasingly oxidative environment and increased lysosomal targeting. The lysosomal targeting of Mtb is facilitated by enhanced TOM20 + mitochondria-derived vesicles (MDVs) biogenesis, a key MQC mechanism. In p62 KD cells, TOM20 + -MDVs biogenesis is MIRO1/MIRO2-dependent and delivered to lysosomes for degradation in a RAB7-dependent manner. Upon infection in p62 KD cells, TOM20 + -MDVs get extensively targeted to Mtb -phagosomes, inadvertently facilitating RAB7 recruitment, PMA reversal and lysosomal targeting of Mtb . Triggering MQC collapse in p62 KD cells further diminishes Mtb survival signifying cooperation between redox- and lysosome-mediated mechanisms. The MQC-anti-bacterial pathway crosstalk could be exploited for host-directed anti-tuberculosis therapies.

5.
STAR Protoc ; 4(3): 102529, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37624702

RESUMO

Autophagy, a catabolic process governing cellular and energy homeostasis, is essential for cell survival and human health. Here, we present a protocol for generating autophagy-deficient (ATG5-/-) human neurons from human embryonic stem cell (hESC)-derived neural precursors. We describe steps for analyzing loss of autophagy by immunoblotting. We then detail analysis of cell death by luminescence-based cytotoxicity assay and fluorescence-based TUNEL staining. This hESC-based experimental platform provides a genetic knockout model for undertaking autophagy studies relevant to human biology. For complete details on the use and execution of this protocol, please refer to Sun et al. (2023).1.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Diferenciação Celular/genética , Neurônios/metabolismo , Autofagia/genética
6.
Stem Cell Reports ; 18(5): 1090-1106, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37163979

RESUMO

Mitochondrial dysfunction involving mitochondria-associated ER membrane (MAM) dysregulation is implicated in the pathogenesis of late-onset neurodegenerative diseases, but understanding is limited for rare early-onset conditions. Loss of the MAM-resident protein WFS1 causes Wolfram syndrome (WS), a rare early-onset neurodegenerative disease that has been linked to mitochondrial abnormalities. Here we demonstrate mitochondrial dysfunction in human induced pluripotent stem cell-derived neuronal cells of WS patients. VDAC1 is identified to interact with WFS1, whereas loss of this interaction in WS cells could compromise mitochondrial function. Restoring WFS1 levels in WS cells reinstates WFS1-VDAC1 interaction, which correlates with an increase in MAMs and mitochondrial network that could positively affect mitochondrial function. Genetic rescue by WFS1 overexpression or pharmacological agents modulating mitochondrial function improves the viability and bioenergetics of WS neurons. Our data implicate a role of WFS1 in regulating mitochondrial functionality and highlight a therapeutic intervention for WS and related rare diseases with mitochondrial defects.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Síndrome de Wolfram , Humanos , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Mutação
7.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131595

RESUMO

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA Damage Response (DDR) programs. However, some cells, in skin for example, are normally exposed to high levels of DNA damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Here we show, using melanoma as a model, that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a non-transcriptional role in shaping the DDR. On exposure to DNA damaging agents, MITF is phosphorylated by ATM/DNA-PKcs, and unexpectedly its interactome is dramatically remodelled; most transcription (co)factors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks, and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement, high MITF levels are associated with increased SNV burden in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of ATM/DNA-PKcs-phosphorylated MITF. Our data suggest that a non-transcriptional function of a lineage-restricted transcription factor contributes to a tissue-specialised modulation of the DDR that can impact cancer initiation.

8.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086404

RESUMO

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Autofagia , Niacinamida/metabolismo
9.
Trends Cell Biol ; 33(9): 788-802, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36878731

RESUMO

Autophagy is an intracellular degradation pathway that recycles subcellular components to maintain metabolic homeostasis. NAD is an essential metabolite that participates in energy metabolism and serves as a substrate for a series of NAD+-consuming enzymes (NADases), including PARPs and SIRTs. Declining levels of autophagic activity and NAD represent features of cellular ageing, and consequently enhancing either significantly extends health/lifespan in animals and normalises metabolic activity in cells. Mechanistically, it has been shown that NADases can directly regulate autophagy and mitochondrial quality control. Conversely, autophagy has been shown to preserve NAD levels by modulating cellular stress. In this review we highlight the mechanisms underlying this bidirectional relationship between NAD and autophagy, and the potential therapeutic targets it provides for combatting age-related disease and promoting longevity.


Assuntos
Longevidade , NAD , Animais , NAD/metabolismo , Metabolismo Energético , NAD+ Nucleosidase/metabolismo , Autofagia
10.
Autophagy ; 19(8): 2395-2397, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36727253

RESUMO

Age-related human pathologies present with a multitude of molecular and metabolic phenotypes, which individually or synergistically contribute to tissue degeneration. However, current lack of understanding of the interdependence of these molecular pathologies limits the potential range of existing therapeutic intervention strategies. In our study, we set out to understand the chain of molecular events, which underlie the loss of cellular viability in macroautophagy/autophagy deficiency associated with aging and age-related disease. We discover a novel axis linking autophagy, a cellular waste disposal pathway, and a metabolite, nicotinamide adenine dinucleotide (NAD). The axis connects multiple organelles, molecules and stress response pathways mediating cellular demise when autophagy becomes dysfunctional. By elucidating the steps on the path from efficient mitochondrial recycling to NAD maintenance and ultimately cell viability, we highlight targets potentially receptive to therapeutic interventions in a range of genetic and age-related diseases associated with autophagy dysfunction.Abbreviations: IMM: inner mitochondrial membrane; NAD: nicotinamide dinucleotide; OXPHOS: oxidative phosphorylation; PARP: poly(ADP-ribose) polymerase; ROS: reactive oxygen species.


Assuntos
Autofagia , NAD , Humanos , Sobrevivência Celular , NAD/metabolismo , Mitocôndrias/metabolismo , Envelhecimento/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
11.
Dev Cell ; 57(22): 2584-2598.e11, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413951

RESUMO

Autophagy is an essential catabolic process that promotes the clearance of surplus or damaged intracellular components. Loss of autophagy in age-related human pathologies contributes to tissue degeneration through a poorly understood mechanism. Here, we identify an evolutionarily conserved role of autophagy from yeast to humans in the preservation of nicotinamide adenine dinucleotide (NAD) levels, which are critical for cell survival. In respiring mouse fibroblasts with autophagy deficiency, loss of mitochondrial quality control was found to trigger hyperactivation of stress responses mediated by NADases of PARP and Sirtuin families. Uncontrolled depletion of the NAD(H) pool by these enzymes ultimately contributed to mitochondrial membrane depolarization and cell death. Pharmacological and genetic interventions targeting several key elements of this cascade improved the survival of autophagy-deficient yeast, mouse fibroblasts, and human neurons. Our study provides a mechanistic link between autophagy and NAD metabolism and identifies targets for interventions in human diseases associated with autophagic, lysosomal, and mitochondrial dysfunction.


Assuntos
NAD , Saccharomyces cerevisiae , Animais , Camundongos , Humanos , Sobrevivência Celular , Autofagia , Morte Celular
12.
Methods Mol Biol ; 2549: 1-21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35347693

RESUMO

Mitochondria are responsible for many vital pathways governing cellular homeostasis, including cellular energy management, heme biosynthesis, lipid metabolism, cellular proliferation and differentiation, cell cycle regulation, and cellular viability. Electron transport and ADP phosphorylation coupled with proton pumping through the mitochondrial complexes contribute to the preservation of mitochondrial membrane potential (ΔΨm). Importantly, mitochondrial polarization is essential for reactive oxygen species (ROS) production and cytosolic calcium (Ca2+) handling. Thus, changes in mitochondrial oxidative phosphorylation (OXPHOS), ΔΨm, and ATP/ADP may occur in parallel or stimulate each other. Brain cells like neurons are heavily reliant on mitochondrial OXPHOS for its high-energy demands, and hence improper mitochondrial function is detrimental for neuronal survival. Indeed, several neurodegenerative disorders are associated with mitochondrial dysfunction. Modeling this disease-relevant phenotype in neuronal cells differentiated from patient-derived human induced pluripotent stem cells (hiPSCs) provide an appropriate cellular platform for studying the disease pathology and drug discovery. In this review, we describe high-throughput analysis of crucial parameters related to mitochondrial function in hiPSC-derived neurons. These methodologies include measurement of ΔΨm, intracellular Ca2+, oxidative stress, and ATP/ADP levels using fluorescence probes via a microplate reader. Benefits of such an approach include analysis of mitochondrial parameters on a large population of cells, simultaneous analysis of different cell lines and experimental conditions, and for drug screening to identify compounds restoring mitochondrial function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Methods Mol Biol ; 2549: 103-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34490597

RESUMO

Autophagy is an evolutionarily conserved catabolic pathway for the degradation of cytoplasmic constituents in eukaryotic cells. It is the primary disposal route for selective removal of undesirable cellular materials like aggregation-prone proteins and damaged organelles for maintaining cellular homeostasis, and for bulk degradation of intracellular macromolecules and recycling the breakdown products for providing energy homeostasis during starvation. These functions of autophagy are attributed to cellular survival and thus pertinent for human health; however, malfunction of this process is detrimental to the cells, particularly for post-mitotic neurons. Thus, basal autophagy is vital for maintaining neuronal homeostasis, whereas autophagy dysfunction contributes to neurodegeneration. Defective autophagy has been demonstrated in several neurodegenerative diseases wherein pharmacological induction of autophagy is beneficial in many of these disease models. Elucidating the mechanisms underlying defective autophagy is imperative for the development of therapies targeting this process. Disease-affected human neuronal cells can be established from patient-derived human induced pluripotent stem cells (hiPSCs) that provide a clinically relevant platform for studying disease mechanisms and drug discovery. Thus, modeling autophagy dysfunction as a phenotypic readout in patient-derived neurons provides a more direct platform for investigating the mechanisms underlying defective autophagy and evaluating the therapeutic efficacy of autophagy inducers. Toward this, several hiPSC-derived neuronal cell models of neurodegenerative diseases have been employed. In this review, we highlight the key methodologies pertaining to hiPSC maintenance and neuronal differentiation, and studying autophagy at an endogenous level in hiPSC-derived neuronal cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Autofagia , Homeostase , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
14.
Methods Mol Biol ; 2240: 207-230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423236

RESUMO

Depletion of oxygen (O2) levels and reduction in the ATP synthesis (or even its complete blockage) are important characteristics of mitochondrial dysfunction; features that are often correlated with neurodegeneration. The measurement of oxygen consumption rate (OCR) is thus essential to evaluate cellular metabolism, survival, and neuroprotective strategies. In the present chapter, we describe the oxygen consumption assay using a Clark-type oxygen electrode in different types of samples named cells suspension (from primary and established cell culture), brain slices (ex vivo), and fresh brain tissues. In addition, we demonstrate herein how the program Oxygraph can be used in order to analyze the data and different approaches to normalize it.


Assuntos
Trifosfato de Adenosina/metabolismo , Bioensaio , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Animais , Encéfalo/efeitos dos fármacos , Linhagem Celular , Humanos , Técnicas In Vitro , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Cultura Primária de Células , Ratos , Fatores de Tempo
15.
Autophagy ; 17(2): 476-495, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32079455

RESUMO

Opportunistic bacterial infections amongst HIV-infected individuals contribute significantly to HIV-associated mortality. The role of HIV-mediated modulation of innate mechanisms like autophagy in promoting opportunistic infections, however, remains obscure. Here we show, HIV reactivation in or infection of macrophages inhibits autophagy and helps the survival of pathogenic Mycobacterium tuberculosis (Mtb) and nonpathogenic non-tuberculous mycobacterial strains (NTMs). The HIV-mediated impairment of xenophagy flux facilitated bacterial survival. Activation of autophagy by trehalose could induce xenophagy flux and kill intracellular Mtb or NTMs either during single or co-infections. Trehalose, we delineate, activates PIKFYVE leading to TFEB nuclear translocation in MCOLN1-dependent manner to induce autophagy. Remarkably, trehalose significantly reduced HIV-p24 levels in ex-vivo-infected PBMCs or PBMCs from treatment-naive HIV patients and also controlled mycobacterial survival within Mtb-infected animals. To conclude, we report leveraging of HIV-mediated perturbed host innate-immunity by opportunistic bacterial pathogens and show an attractive therapeutic strategy for HIV and associated co-morbidities.Abbreviations: AIDS: acquired immune deficiency syndrome; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; BafA1: bafilomycin A1; CFU: colony forming unit; CTSD: cathepsin D; CD63: CD63 molecule; EGFP: enhanced green fluorescent protein; FRET: Förster resonance energy transfer; GABARAP: gamma-aminobutyric acid receptor-associated protein; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; GLUT: glucose transporter; HIV: human immunodeficiency virus; hMDMs: human monocyte derived macrophages; IL2: interleukin 2; LAMP1: lysosomal-associated membrane protein 1; LC3B-II: lipidated microtubule-associated proteins 1A/1B light chain 3B; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin; mRFP: monomeric red fluorescent protein; M6PR: mannose-6-phosphate receptor; NAC: N- acetyl- L -cysteine; NTM's: non-tuberculous mycobacteria; PBMC: Peripheral Blood Mononuclear cells; PIKFYVE: phosphoinositide kinase; FYVE-Type Zinc Finger; PHA: phytohemagglutinin; PMA: phorbol 12-myristate 13-acetate; PtdIns(3,5)P2: Phosphatidylinositol 3,5-bisphosphate; ptfLC3: pEGFP-mRFP-LC3; ROS: reactive oxygen species; SQSTM1: sequestosome1; TFEB: transcription factor EB; MCOLN1/TRPML1: mucolipin 1; PIP4P1/TMEM55B: Human trans-membrane Protein 55B; UVRAG: UV Radiation Resistance Associate; VPS35: vacuolar protein sorting associated protein 35; WDR45: WD repeat domain 45; YCAM: Yellow Chameleon.


Assuntos
Autofagossomos/virologia , Autofagia/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Trealose/farmacologia , Animais , Autofagossomos/metabolismo , Autofagia/fisiologia , Coinfecção/tratamento farmacológico , Coinfecção/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Mycobacterium/metabolismo , Mycobacterium/virologia , Trealose/metabolismo
17.
18.
J Mol Biol ; 432(8): 2735-2753, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32087199

RESUMO

Neurodegenerative diseases (NDDs) comprise conditions with impaired neuronal function and loss and may be associated with a build-up of aggregated proteins with altered physicochemical properties (misfolded proteins). There are many disorders, and causes include gene mutations, infections, or exposure to toxins. The autophagy pathway is involved in the removal of unwanted proteins and organelles through lysosomes. While lysosomal storage disorders have been described for many years, it is now recognised that perturbations of the autophagy pathway itself can also lead to neurodegenerative disease. These include monogenic disorders of key proteins involved in the autophagy pathway, and disorders within pathways that critically control autophagy through monitoring of the supply of nutrients (mTORC1 pathway) or of energy supply in cells (AMPK pathway). This review focuses on childhood-onset neurodegenerative disorders with perturbed autophagy, due to defects in the autophagy pathway, or in upstream signalling via mTORC1 and AMPK. The review first provides a short description of autophagy, as related to neurons. It then examines the extended role of autophagy in neuronal function, plasticity, and memory. There follows a description of each step of the autophagy pathway in greater detail, illustrated with examples of diseases grouped by the stage of their perturbation of the pathway. Each disease is accompanied by a short clinical description, to illustrate the diversity but also the overlap of symptoms caused by perturbation of key proteins necessary for the proper functioning of autophagy. Finally, there is a consideration of current challenges that need addressing for future therapeutic advances.


Assuntos
Autofagia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Animais , Humanos , Transdução de Sinais
19.
J Mol Biol ; 432(8): 2754-2798, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32044344

RESUMO

Autophagy is an intracellular degradation process that is essential for cellular survival, tissue homeostasis, and human health. The housekeeping functions of autophagy in mediating the clearance of aggregation-prone proteins and damaged organelles are vital for post-mitotic neurons. Improper functioning of this process contributes to the pathology of myriad human diseases, including neurodegeneration. Impairment in autophagy has been reported in several neurodegenerative diseases where pharmacological induction of autophagy has therapeutic benefits in cellular and transgenic animal models. However, emerging studies suggest that the efficacy of autophagy inducers, as well as the nature of the autophagy defects, may be context-dependent, and therefore, studies in disease-relevant experimental systems may provide more insights for clinical translation to patients. With the advancements in human stem cell technology, it is now possible to establish disease-affected cellular platforms from patients for investigating disease mechanisms and identifying candidate drugs in the appropriate cell types, such as neurons that are otherwise not accessible. Towards this, patient-derived human induced pluripotent stem cells (hiPSCs) have demonstrated considerable promise in constituting a platform for effective disease modeling and drug discovery. Multiple studies have utilized hiPSC models of neurodegenerative diseases to study autophagy and evaluate the therapeutic efficacy of autophagy inducers in neuronal cells. This review provides an overview of the regulation of autophagy, generation of hiPSCs via cellular reprogramming, and neuronal differentiation. It outlines the findings in various neurodegenerative disorders where autophagy has been studied using hiPSC models.


Assuntos
Autofagia , Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Animais , Humanos
20.
Nucleic Acids Res ; 48(3): 1271-1284, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31828313

RESUMO

The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Reparo de DNA por Recombinação/genética , Proteínas de Schizosaccharomyces pombe/genética , Telômero/genética , Cromossomos Fúngicos/genética , Quebras de DNA de Cadeia Dupla , Exodesoxirribonucleases/genética , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico/genética , Instabilidade Genômica/genética , Perda de Heterozigosidade/genética , Rad51 Recombinase/genética , Schizosaccharomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA