Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Oncoimmunology ; 13(1): 2406052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359389

RESUMO

Background: Intrahepatic cholangiocarcinoma (ICC) is a disease with poor prognosis and limited therapeutic options. We investigated the tumor immune microenvironment (TIME) to identify predictors of disease outcome and to explore targets for therapeutic modulation. Methods: Liver tissue samples were collected during 2008-2019 from patients (n = 139) diagnosed with ICC who underwent curative intent surgery without neoadjuvant chemotherapy. Samples from the discovery cohort (n = 86) were immunohistochemically analyzed on tissue microarrays (TMAs) for the expression of CD68, CD3, CD4, CD8, Foxp3, PD-L1, STAT1, and p-STAT1 in tumor core and stroma areas. Results were digitally analyzed using QuPath software and correlated with clinicopathological characteristics. For validation of TIME-related biomarkers, we performed multiplex imaging mass cytometry (IMC) in a validation cohort (n = 53). Results: CD68+ cells were the predominant immune cell type in the TIME of ICC. CD4+high T cell density correlated with better overall survival (OS). Prediction modeling together with validation cohort confirmed relevance of CD4+ cells, PD-L1 expression by immune cells in the stroma and N-stage on overall disease outcome. In turn, IMC analyses revealed that silent CD3+CD4+ clusters inversely impacted survival. Among annotated immune cell clusters, PD-L1 was most relevantly expressed by CD4+FoxP3+ cells. A subset of tumors with high density of immune cells ("hot" cluster) correlated with PD-L1 expression and could identify a group of candidates for immune checkpoint inhibition (ICI). Ultimately, higher levels of STAT1 expression were associated with higher lymphocyte infiltration and PD-L1 expression. Conclusions: These results highlight the importance of CD4+ T cells in immune response against ICC. Secondly, a subset of tumors with "hot" TIME represents potential candidates for ICI, while stimulation of STAT1 pathway could be a potential target to turn "cold" into "hot" TIME in ICC.


The tumor immune microenvironment (TIME) plays a critical role in the immune response In many cancers, including intrahepatic cholangiocarcinoma (ICC). Molecular subtyping of the ICC microenvironment already revealed inter-tumoral heterogeneity with variant profiles of immune cell infiltrates. A recent study created an in-depth immune cell atlas of the TIME in biliary tract cancers and could demonstrate the relevance of specific immune cell subpopulations on patient outcome. We are able to provide a distinctive characterization of TIME, separating tumor epithelial- and stroma areas, in a large and representative ICC cohort using digitalized image analysis on tissue microarrays (TMA) as well as multiplex imaging mass cytometry (IMC). The study was designed for identification of immune cell prognosticators allocating institutional ICC patients into a discovery (2008­15) and a validation (2010­19) cohort. Immune cell subpopulations were correlated with clinicopathological characteristics and patient outcome. Our results highlight: i. The important role of CD4+ T cell infiltration in ICC patients; ii. ICC tumors with high density of immune cells associated with PD-L1 expression identifies a subset of patients with variant tumor biology; iii. Stimulation of STAT1 pathway may be a relevant target to turn "cold" into "hot" tumors.


Assuntos
Antígeno B7-H1 , Neoplasias dos Ductos Biliares , Biomarcadores Tumorais , Colangiocarcinoma , Microambiente Tumoral , Humanos , Colangiocarcinoma/imunologia , Colangiocarcinoma/patologia , Microambiente Tumoral/imunologia , Masculino , Feminino , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/patologia , Pessoa de Meia-Idade , Prognóstico , Idoso , Biomarcadores Tumorais/metabolismo , Antígeno B7-H1/metabolismo , Fator de Transcrição STAT1/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Antígenos CD/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Molécula CD68
2.
Cancers (Basel) ; 16(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272858

RESUMO

Risk prediction prior to oncologic esophagectomy is crucial for assisting surgeons and patients in their joint informed decision making. Recently, a new risk prediction model for 90-day mortality after esophagectomy using the International Esodata Study Group (IESG) database was proposed, allowing for the preoperative assignment of patients into different risk categories. However, given the non-linear dependencies between patient- and tumor-related risk factors contributing to cumulative surgical risk, machine learning (ML) may evolve as a novel and more integrated approach for mortality prediction. We evaluated the IESG risk model and compared its performance to ML models. Multiple classifiers were trained and validated on 552 patients from two independent centers undergoing oncologic esophagectomies. The discrimination performance of each model was assessed utilizing the area under the receiver operating characteristics curve (AUROC), the area under the precision-recall curve (AUPRC), and the Matthews correlation coefficient (MCC). The 90-day mortality rate was 5.8%. We found that IESG categorization allowed for adequate group-based risk prediction. However, ML models provided better discrimination performance, reaching superior AUROCs (0.64 [0.63-0.65] vs. 0.44 [0.32-0.56]), AUPRCs (0.25 [0.24-0.27] vs. 0.11 [0.05-0.21]), and MCCs (0.27 ([0.25-0.28] vs. 0.15 [0.03-0.27]). Conclusively, ML shows promising potential to identify patients at risk prior to surgery, surpassing conventional statistics. Still, larger datasets are needed to achieve higher discrimination performances for large-scale clinical implementation in the future.

3.
J Transl Med ; 22(1): 774, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152426

RESUMO

BACKGROUND: Colorectal cancer is the third most common tumour entity in the world and up to 50% of the patients develop liver metastases (CRLM) within five years. To improve and personalize therapeutic strategies, new diagnostic tools are urgently needed. For instance, biomechanical tumour properties measured by magnetic resonance elastography (MRE) could be implemented as such a diagnostic tool. We postulate that ex vivo MRE combined with histological and radiological evaluation of CRLM could provide biomechanics-based diagnostic markers for cell viability in tumours. METHODS: 34 CRLM specimens from patients who had undergone hepatic resection were studied using ex vivo MRE in a frequency range from 500 Hz to 5300 Hz with increments of 400 Hz. Single frequency evaluation of shear wave speed and wave penetration rate as proxies for stiffness and viscosity was performed, along with rheological model fitting based on the spring-pot model and powerlaw exponent α, ranging between 0 (complete solid behaviour) and 1 (complete fluid behaviour). For histological analysis, samples were stained with H&E and categorized according to the degree of regression. Quantitative histologic analysis was performed to analyse nucleus size, aspect ratio, and density. Radiological response was assessed according to RECIST-criteria. RESULTS: Five samples showed major response to chemotherapy, six samples partial response and 23 samples no response. For higher frequencies (> 2100 Hz), shear wave speed correlated significantly with the degree of regression (p ≤ 0.05) indicating stiffer properties with less viable tumour cells. Correspondingly, rheological analysis of α revealed more elastic-solid tissue properties at low cell viability and major response (α = 0.43 IQR 0.36, 0.47) than at higher cell viability and no response (α = 0.51 IQR 0.48, 0.55; p = 0.03). Quantitative histological analysis showed a decreased nuclear area and density as well as a higher nuclear aspect ratio in patients with major response to treatment compared to patients with no response (all p < 0.05). DISCUSSION: Our results suggest that MRE could be useful in the characterization of biomechanical property changes associated with cell viability in CRLM. In the future, MRE could be applied in clinical diagnosis to support individually tailored therapy plans for patients with CRLM.


Assuntos
Sobrevivência Celular , Neoplasias Colorretais , Técnicas de Imagem por Elasticidade , Elasticidade , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Viscosidade , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
4.
Stem Cell Res ; 80: 103516, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094505

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD), the leading cause of end-stage liver disease in developed countries, is expected to increase over the next decade. Characterized by hepatic steatosis, MAFLD is commonly studied in animal models. Here, we generated a human induced pluripotent stem cell (iPSC) line from a patient homozygous of the protective MTARC1 gene variant rs2642438:A. This line displays a normal karyotype and typical pluripotent stem cell morphology and can differentiate into all three germ layers in vitro.


Assuntos
Homozigoto , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Linhagem Celular , Diferenciação Celular , Masculino
5.
Ann Surg ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39140592

RESUMO

OBJECTIVE: To evaluate the outcome of marginal liver grafts based on the Eurotransplant extended donor criteria (ECD) criteria. SUMMARY BACKGROUND DATA: Eurotransplant uses a broad definition of ECD criteria (age >65 years, steatosis >40%, BMI >30 kg/m2, ICU stay >7 days, DCD, and certain laboratory parameters) for allocating organs to recipients who have consented to marginal grafts. Historically, marginal liver grafts were associated with increased rates of dysfunction. METHODS: Retrospective cohort analysis using the German Transplant Registry (GTR) and the US Scientific Registry of Transplant Recipients (SRTR) from 2006-2016. Results were validated with recent SRTR data (2017-2022). Donors were classified according to the Eurotransplant ECD criteria, DCD was excluded. Data were analyzed with cut-off prediction, binomial logistic regression, and multivariate Cox regression. RESULTS: The study analyzed 92,330 deceased brain-dead donors (87% SRTR) and 70,374 transplants (87% SRTR) in adult recipients. Predominant ECD factors were donor age in Germany (30%) and BMI in the US (28%). Except for donor age, grafts meeting ECD criteria were not associated with impaired 1- or 3-year survival. Cut-offs had little to no predictive value for 30-day graft survival (AUROC 0.49 - 0.52) and were nominally higher for age (72 vs. 65 years) in Germany as compared to those defined by current Eurotransplant criteria. CONCLUSIONS: The outcome of transplanted grafts from higher risk donors was nearly equal to standard donors with Eurotransplant criteria failing to predict survival of marginal grafts. Modifying ECD criteria could improve graft allocation and potentially expand the donor pool.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39007511

RESUMO

Vascular surgery faces a critical demand for novel vascular grafts that are biocompatible and thromboresistant. This urgency particularly applies to bypass operations involving small caliber vessels. In the realm of tissue engineering, the development of fully vascularized organs holds great promise as a solution to organ shortage for transplantation. To achieve this, it is imperative to (re-)construct a biocompatible and non-thrombogenic vascular network within these organs. In this systematic review, we identify, classify and discuss basic principles and methods used to perform in vitro/ex vivo dynamic thrombogenicity testing of perfusable tissue engineered organs and tissues. We conducted a pre-registered systematic review of studies published in the last 23 years according to PRISMA-P Guidelines, comprising a systematic data extraction, in-depth analysis and risk of bias assessment of 116 included studies. We identified shaking (n=28), flow loop (n=17), ex vivo (arterio-venous shunt, n=33) and dynamic in vitro models (n=38) as main approaches for thrombogenicity assessment. This comprehensive review unveils a prevalent lack of standardization and serves as a valuable guide in the design of standardized experimental setups.

7.
Tissue Eng Part A ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38832856

RESUMO

Background: The persistent challenge of organ scarcity in liver transplantation leads to an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) is used for improved preservation. Due to the mimicked in vivo conditions during normothermic machine perfusion, the liver is metabolically active, which allows quality assessment during perfusion. Bile seems to be of rising interest in clinical studies, as it is easily collectible for analysis. As there are currently no data on biliary bile acids during NMP, the primary objective of this study was to use our experimental rodent NMP model to assess changes in bile composition through organ damage during perfusion to inform clinical evaluation of donor organs during NMP. Methods: Thirty livers from male Sprague-Dawley rats in five groups underwent 6 h of NMP using either erythrocyte-supplemented DMEM or Steen solution, with or without 30 min of warm ischemia time (WIT). We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at 3-hour intervals. Bile samples were analyzed for biliary pH, LDH, and gamma glutamyltransferase, as well as biliary bile acids via mass spectrometry and UHPLC. Results: Compared with regular livers, liver injury parameters were significantly higher in our donation after circulatory death (DCD) model. Bile production was significantly reduced in livers exposed to WIT, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers experiencing WIT. However, regular livers produced a higher total amount of biliary bile acids during perfusion. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced during perfusion due to the missing enterohepatic circulation. Conclusions: WIT-induced liver injury affects bile composition within our small-animal NMP model. We hypothesize this phenomenon to be attributed to the energy-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile. Our results may inform clinical studies, in which biliary bile acids might have a potential as a quantifiable viability marker in human NMP liver transplantation studies.

8.
Front Immunol ; 15: 1395945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799435

RESUMO

Acute cellular rejection remains a significant obstacle affecting successful outcomes of organ transplantation including vascularized composite tissue allografts (VCA). Donor antigen presenting cells (APCs), particularly dendritic cells (DCs), orchestrate early alloimmune responses by activating recipient effector T cells. Employing a targeted approach, we investigated the impact of donor-derived conventional DCs (cDCs) and APCs on the immunogenicity of skin and skin-containing VCA grafts, using mouse models of skin and hind limb transplantation. By post-transplantation day 6, skin grafts demonstrated severe rejections, characterized by predominance of recipient CD4 T cells. In contrast, hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells. Notably, the skin component exhibited heightened immunogenicity when compared to the entire VCA, evidenced by increased frequencies of pan (CD11b-CD11c+), mature (CD11b-CD11c+MHCII+) and active (CD11b-CD11c+CD40+) DCs and cDC2 subset (CD11b+CD11c+ MHCII+) in the lymphoid tissues and the blood of skin transplant recipients. While donor depletion of cDC and APC reduced frequencies, maturation and activation of DCs in all analyzed tissues of skin transplant recipients, reduction in DC activities was only observed in the spleen of hind limb recipients. Donor cDC and APC depletion did not impact all lymphocyte compartments but significantly affected CD8 T cells and activated CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC depletion attenuated the Th17 immune response, evident by significantly reduced Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E and lymphotoxin-α in the serum samples of both skin and hind limb recipients. In conclusion, our findings underscore the highly immunogenic nature of skin component in VCA. The depletion of donor APCs and cDCs mitigates the immunogenicity of skin grafts while exerting minimal impact on VCA.


Assuntos
Células Dendríticas , Rejeição de Enxerto , Membro Posterior , Transplante de Pele , Animais , Células Dendríticas/imunologia , Camundongos , Membro Posterior/imunologia , Membro Posterior/transplante , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Aloenxertos Compostos/imunologia , Alotransplante de Tecidos Compostos Vascularizados/métodos , Linfócitos T CD8-Positivos/imunologia , Masculino , Doadores de Tecidos , Pele/imunologia
9.
Acta Biomater ; 182: 42-53, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729549

RESUMO

Magnetic resonance elastography (MRE) and diffusion-weighted imaging (DWI) are complementary imaging techniques that detect disease based on viscoelasticity and water mobility, respectively. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering the clinical translation of combined DWI-MRE markers. We used DWI-MRE to study 129 biomaterial samples including native and cross-linked collagen, glycosaminoglycans (GAGs) with different sulfation levels, and decellularized specimens of pancreas and liver, all with different proportions of solid tissue, or solid fractions. We developed a theoretical framework of the relationship between mechanical loss and tissue-water mobility based on two parameters, solid and fluid viscosity. These parameters revealed distinct DWI-MRE property clusters characterizing weak, moderate, and strong water-network interactions. Sparse networks interacting weakly with water, such as collagen or diluted decellularized tissue, resulted in marginal changes in water diffusion over increasing solid viscosity. In contrast, dense networks with larger solid fractions exhibited both free and hindered water diffusion depending on the polarity of the solid components. For example, polar and highly sulfated GAGs as well as native soft tissues hindered water diffusion despite relatively low solid viscosity. Our results suggest that two fundamental properties of tissue networks, solid fraction and network polarity, critically influence solid and fluid viscosity in biological tissues. Since clinical DWI and MRE are sensitive to these viscosity parameters, the framework we present here can be used to detect tissue remodeling and architectural changes in the setting of diagnostic imaging. STATEMENT OF SIGNIFICANCE: The viscoelastic properties of biological tissues provide a wealth of information on the vital state of cells and host matrix. Combined measurement of viscoelasticity and water diffusion by medical imaging is sensitive to tissue microarchitecture. However, the relationship between viscoelasticity and water diffusion is still poorly understood, hindering full exploitation of these properties as a combined clinical biomarker. Therefore, we analyzed the parameter space accessible by diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE) and developed a theoretical framework for the relationship between water mobility and mechanical parameters in biomaterials. Our theory of solid material properties related to particle motion can be translated to clinical radiology using clinically established MRE and DWI.


Assuntos
Elasticidade , Água , Viscosidade , Água/química , Difusão , Animais , Técnicas de Imagem por Elasticidade/métodos , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Colágeno/química , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Fígado/diagnóstico por imagem
10.
PLoS One ; 19(4): e0297497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635534

RESUMO

BACKGROUND: Considering the expected increase in the elderly population and the growing emphasis on aging-related biomedical research, the demand for aged laboratory animals has surged, challenging established husbandry practices. Our objective was to establish a cost-effective method for environmental enrichment, utilizing the liver as a representative organ to assess potential metabolic changes in response to differing enrichment levels. METHODS: We conducted a six-month study involving 24 male Sprague Dawley rats, randomly assigned to four environmental enrichment groups. Two groups were housed in standard cages, while the others were placed in modified rabbit cages. Half of the groups received weekly playtime in an activity focused rat housing unit. We evaluated hormone levels, playtime behavior, and subjective handling experience. Additionally, liver tissue proteomic analysis was performed. RESULTS: Initial corticosterone levels and those after 3 and 6 months showed no significant differences. Yet, testosterone levels were lower in the control group by the end of the study (p = 0.007). We observed 1871 distinct proteins in liver tissue, with 77% being common across groups. In gene ontology analysis, no specific pathways were overexpressed. In semiquantitative analysis, we observed differences in proteins associated in lipid metabolism such as Apolipoprotein A-I and Acyl-CoA 6-desaturase, which were lower in the control group (p = 0.024 and p = 0.009). Rats in the intervention groups with weekly playtime displayed the least amount of reported distress during inspection or upon room entry and were less prone to accepting treats. Removing animals from their enclosure was most effortless for those in the large cage group. Over time, there was a decrease in conflicts among rats that interacted only twice weekly during playpen time. DISCUSSION: In summary, refining husbandry practices for aging rats is both simple and budget-friendly, with no apparent adverse effects on stress levels, animal development, or relevant metabolic changes in the liver.


Assuntos
Proteoma , Proteômica , Idoso , Humanos , Ratos , Masculino , Animais , Coelhos , Ratos Sprague-Dawley , Fígado , Animais de Laboratório , Abrigo para Animais
11.
Langenbecks Arch Surg ; 409(1): 137, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653917

RESUMO

PURPOSE: Minimal-invasive liver surgery (MILS) reduces surgical trauma and is associated with fewer postoperative complications. To amplify these benefits, perioperative multimodal concepts like Enhanced Recovery after Surgery (ERAS), can play a crucial role. We aimed to evaluate the cost-effectiveness for MILS in an ERAS program, considering the necessary additional workforce and associated expenses. METHODS: A prospective observational study comparing surgical approach in patients within an ERAS program compared to standard care from 2018-2022 at the Charité - Universitätsmedizin Berlin. Cost data were provided by the medical controlling office. ERAS items were applied according to the ERAS society recommendations. RESULTS: 537 patients underwent liver surgery (46% laparoscopic, 26% robotic assisted, 28% open surgery) and 487 were managed by the ERAS protocol. Implementation of ERAS reduced overall postoperative complications in the MILS group (18% vs. 32%, p = 0.048). Complications greater than Clavien-Dindo grade II incurred the highest costs (€ 31,093) compared to minor (€ 17,510) and no complications (€13,893; p < 0.001). In the event of major complications, profit margins were reduced by a median of € 6,640. CONCLUSIONS: Embracing the ERAS society recommendations in liver surgery leads to a significant reduction of complications. This outcome justifies the higher cost associated with a well-structured ERAS protocol, as it effectively offsets the expenses of complications.


Assuntos
Análise Custo-Benefício , Recuperação Pós-Cirúrgica Melhorada , Hepatectomia , Procedimentos Cirúrgicos Minimamente Invasivos , Complicações Pós-Operatórias , Humanos , Estudos Prospectivos , Masculino , Feminino , Hepatectomia/economia , Hepatectomia/efeitos adversos , Pessoa de Meia-Idade , Complicações Pós-Operatórias/economia , Complicações Pós-Operatórias/prevenção & controle , Idoso , Procedimentos Cirúrgicos Minimamente Invasivos/economia , Laparoscopia/economia , Laparoscopia/efeitos adversos , Procedimentos Cirúrgicos Robóticos/economia , Procedimentos Cirúrgicos Robóticos/efeitos adversos
12.
Hepatol Commun ; 8(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315126

RESUMO

BACKGROUND: While 4 randomized controlled clinical trials confirmed the early benefits of hypothermic oxygenated machine perfusion (HOPE), high-level evidence regarding long-term clinical outcomes is lacking. The aim of this follow-up study from the HOPE-ECD-DBD trial was to compare long-term outcomes in patients who underwent liver transplantation using extended criteria donor allografts from donation after brain death (ECD-DBD), randomized to either HOPE or static cold storage (SCS). METHODS: Between September 2017 and September 2020, recipients of liver transplantation from 4 European centers receiving extended criteria donor-donation after brain death allografts were randomly assigned to HOPE or SCS (1:1). Follow-up data were available for all patients. Analyzed endpoints included the incidence of late-onset complications (occurring later than 6 months and graded according to the Clavien-Dindo Classification and the Comprehensive Complication Index) and long-term graft survival and patient survival. RESULTS: A total of 46 patients were randomized, 23 in both arms. The median follow-up was 48 months (95% CI: 41-55). After excluding early perioperative morbidity, a significant reduction in late-onset morbidity was observed in the HOPE group (median reduction of 23 Comprehensive Complication Index-points [p=0.003] and lower incidence of major complications [Clavien-Dindo ≥3, 43% vs. 85%, p=0.009]). Primary graft loss occurred in 13 patients (HOPE n=3 vs. SCS n=10), resulting in a significantly lower overall graft survival (p=0.029) and adverse 1-, 3-, and 5-year survival probabilities in the SCS group, which did not reach the level of significance (HOPE 0.913, 0.869, 0.869 vs. SCS 0.783, 0.606, 0.519, respectively). CONCLUSIONS: Our exploratory findings indicate that HOPE reduces late-onset morbidity and improves long-term graft survival providing clinical evidence to further support the broad implementation of HOPE in human liver transplantation.


Assuntos
Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Seguimentos , Morte Encefálica , Sobrevivência de Enxerto , Perfusão/métodos
13.
J Biol Eng ; 18(1): 17, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389090

RESUMO

BACKGROUND: The extracellular matrix (ECM) is a three-dimensional network of proteins that encases and supports cells within a tissue and promotes physiological and pathological cellular differentiation and functionality. Understanding the complex composition of the ECM is essential to decrypt physiological processes as well as pathogenesis. In this context, the method of decellularization is a useful technique to eliminate cellular components from tissues while preserving the majority of the structural and functional integrity of the ECM. RESULTS: In this study, we employed a bottom-up proteomic approach to elucidate the intricate network of proteins in the decellularized extracellular matrices of murine liver and kidney tissues. This approach involved the use of a novel, perfusion-based decellularization protocol to generate acellular whole organ scaffolds. Proteomic analysis of decellularized mice liver and kidney ECM scaffolds revealed tissue-specific differences in matrisome composition, while we found a predominantly stable composition of the core matrisome, consisting of collagens, glycoproteins, and proteoglycans. Liver matrisome analysis revealed unique proteins such as collagen type VI alpha-6, fibrillin-2 or biglycan. In the kidney, specific ECM-regulators such as cathepsin z were detected. CONCLUSION: The identification of distinct proteomic signatures provides insights into how different matrisome compositions might influence the biological properties of distinct tissues. This experimental workflow will help to further elucidate the proteomic landscape of decellularized extracellular matrix scaffolds of mice in order to decipher complex cell-matrix interactions and their contribution to a tissue-specific microenvironment.

14.
Transplant Rev (Orlando) ; 38(2): 100831, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237243

RESUMO

BACKGROUND: Liver transplantation is a life-saving therapy for end-stage liver disease patients, but acute cellular rejection (ACR) and graft complications remain significant postoperative challenges. Early and accurate diagnosis is crucial for timely intervention and improved patient outcomes, but their diagnosis rely currently on invasive biopsy sampling, thus prompting the search for non-invasive Biomarkers. MicroRNA (miRNA) have emerged as promising biomarkers in various pathological conditions, and their potential utility in diagnosing acute cellular rejection after liver transplantation has gained significant interest. METHODS: This systematic review of PubMed, Web of Science, and the ClinicalTrials.gov registry analyzes studies exploring miRNA as biomarkers for ACR and graft dysfunction in liver transplantation (PROSPERO ID CRD42023465278). The Cochrane Collaboration tool for assessing risk of bias was employed. Population data, identified miRNA and their dynamic regulation, as well as event prediction were compared. Data extraction and quality assessment were performed independently by two reviewers. RESULTS: Thirteen studies were included in this systematic review. Various investigated miRNAs were upregulated in association with acute cellular rejection, like miR-122, miR-155, miR-181, miR-483-3p, and miR-885-5p, demonstrating great biomarker potential. Additionally, several studies conducted target gene analysis, revealing insights into cellular mechanisms linked to ACR. Moreover, various miRNA were also capable of predicting different organ complications following transplantation, expanding their versatility. Remaining challenges include the standardization of miRNA profiling, the need for functional validation, and the necessity for long-term studies. CONCLUSION: The results highlight the potential of miRNA as specific, non-invasive biomarkers for ACR and graft dysfunction following liver transplantation. However, further research is needed to validate these findings and establish standardized diagnostic panels to incorporate them into clinical practice and explore miRNA-based therapies in the future.


Assuntos
Transplante de Fígado , MicroRNAs , Humanos , MicroRNAs/genética , Transplante de Fígado/efeitos adversos , Biomarcadores/análise
15.
Plast Reconstr Surg Glob Open ; 11(9): e5249, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38152709

RESUMO

Background: The mouse hind limb model represents a powerful research tool in vascularized composite tissue allotransplantation, but its applicability is limited due to poor graft survival (62%-83%). Vascular thrombosis and massive hemorrhage are the major causes for these drop-outs. We hypothesize that because of better anticoagulation effect and lower risk of thrombocytopenia, application of low molecular weight heparin (LMWH) will minimize vascular complications and enhance graft and animal survival. Methods: Fifty allogeneic hind limb transplantations were performed (C57BL/6 to DBA/2 mice) using five different anticoagulation protocols. Bleeding and thromboembolic events were recorded macroscopically by postoperative hemorrhage and livid discoloration of the graft, respectively. Graft perfusion and survival were monitored daily by capillary-refill-time of graft toes within 2-3 seconds. Vascular congestion and tissue necrosis were examined by histological evaluation of hematoxylin-eosin-stained tissue sections. Results: All transplantations were technically successful. Increase in thromboembolic events and a concomitant decrease in bleeding events were observed with the decreasing concentration of heparin in the perfusion solution. Although treatment of donor and recipient with low dose of LMWH could not reduce thromboembolic events, moderate dose effectively reduced these events. Compared with the poor outcome of graft perfusion with heparin alone, additional treatment of donor and recipient with low dose of LMWH improved graft and animal survival by 18%. Interestingly, animals treated with moderate dose of LMWH demonstrated 100% graft and animal survival. Conclusions: Treatment of donor and recipient mice with a moderate dose of LMWH prevents vascular complications and improves the outcome of murine hind limb transplants.

16.
Ann Surg Open ; 4(4): e350, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144486

RESUMO

Objective: To compare the outcome of minimally invasive liver surgery (MILS) to open liver surgery (OLS) for resection of colorectal liver metastases (CRLM) on a nationwide level. Background: Colorectal cancer is the third most common malignancy worldwide. Up to 50% of all patients with colorectal cancer develop CRLM. MILS represents an attractive alternative to OLS for treatment of CRLM. Methods: Retrospective cohort study using the prospectively recorded German Quality management registry for liver surgery. Propensity-score matching was performed to account for variance in the extent of resection and patient demographics. Results: In total, 1037 patients underwent liver resection for CRLM from 2019 to 2021. MILS was performed in 31%. Operative time was significantly longer in MILS (234 vs 222 minutes, P = 0.02) compared with OLS. After MILS, median length of hospital stay (LOS) was significantly shorter (7 vs 10 days; P < 0.001). Despite 76% of major resections being OLS, postoperative complications and 90-day morbidity and mortality did not differ. The Pringle maneuver was more frequently used in MILS (48% vs 40%, P = 0.048). After propensity-score matching for age, body mass index, Eastern Cooperative Oncology Group, and extent of resection, LOS remained shorter in the MILS cohort (6 vs 10 days, P < 0.001) and operative time did not differ significantly (P = 0.2). Conclusion: MILS is not the standard for resection of CRLM in Germany. Drawbacks, such as a longer operative time remain. However, if technically possible, MILS is a reasonable alternative to OLS for resection of CRLM, with comparable postoperative complications, reduced LOS, and equal oncological radicality.

17.
Biomater Biosyst ; 12: 100084, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035034

RESUMO

Thanks to its natural complexity and functionality, decellularized extracellular matrix (dECM) serves as an excellent foundation for creating highly cell-compatible bioinks and bioresins. This enables the bioprinted cells to thrive in an environment that closely mimics their native ECM composition and offers customizable biomechanical properties. To formulate dECM bioinks and bioresins, one must first pulverize and/or solubilize the dECM into non-crosslinked fragments, which can then be chemically modified as needed. In bioprinting, the solubilized dECM-derived material is typically deposited and/or crosslinked in a layer-by-layer fashion to build 3D hydrogel structures. Since the introduction of the first liver-derived dECM-based bioinks, a wide variety of decellularized tissue have been employed in bioprinting, including kidney, heart, cartilage, and adipose tissue among others. This review aims to summarize the critical steps involved in tissue-derived dECM bioprinting, starting from the decellularization of the ECM to the standardized formulation of bioinks and bioresins, ultimately leading to the reproducible bioprinting of tissue constructs. Notably, this discussion also covers photocrosslinkable dECM bioresins, which are particularly attractive due to their ability to provide precise spatiotemporal control over the gelation in bioprinting. Both in extrusion printing and vat photopolymerization, there is a need for more standardized protocols to fully harness the unique properties of dECM-derived materials. In addition to mammalian tissues, the most recent bioprinting approaches involve the use of microbial extracellular polymeric substances in bioprinting of bacteria. This presents similar challenges as those encountered in mammalian cell printing and represents a fascinating frontier in bioprinting technology.

18.
Tissue Eng Part A ; 29(19-20): 518-528, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37498780

RESUMO

Normothermic ex vivo liver machine perfusion (NEVLP) has been developed to address the increasing organ shortage in liver transplantation, through optimal preservation, assessment, and conditioning of grafts from extended criteria donors. There remains a need to establish simple and standardized animal models that simulate clinical NEVLP to test novel therapies. Liver grafts from 36 Sprague-Dawley rats were perfused for 6 h in a dual-vessel NEVLP system with a Dulbecco's modified Eagles medium-based perfusate supplemented with rat plasma and erythrocytes. Varying doses of the clinically used vasodilator epoprostenol, Kupffer cell inhibitor glycine, and a Steen™-based perfusate were assessed. Perfusion pressures and bile production were recorded, and perfusate was analyzed for transaminase secretion. Tissue samples were evaluated histologically, and levels of cytokines and 8-Isoprostane were measured. Increasing levels of epoprostenol and the addition of glycine resulted in a stepwise decrease of transaminase secretion and improved bile production. Steen further decreased transaminase release and interleukin 1 beta levels. Liver grafts perfused with the optimized Steen-based protocol exhibited lowest levels of oxidative stress and best-preserved liver integrity. In conclusion, epoprostenol seemed to ameliorate liver function and prevent cellular damage beyond its vasodilatory effect, with glycine acting synergistically. The anti-inflammatory and antioxidative properties of Steen further improved the outcome of perfusion. Our rodent NEVLP system may be used to rapidly test new agents for the pharmacologic conditioning of livers and help translate findings from bench-to-bedside.

19.
Biomater Adv ; 153: 213493, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418932

RESUMO

BACKGROUND: Tissue engineered bioscaffolds based on decellularized composites have gained increasing interest for treatment of various diaphragmatic impairments, including muscular atrophies and diaphragmatic hernias. Detergent-enzymatic treatment (DET) constitutes a standard strategy for diaphragmatic decellularization. However, there is scarce data on comparing DET protocols with different substances in distinct application models in their ability to maximize cellular removal while minimizing extracellular matrix (ECM) damage. METHODS: We decellularized diaphragms of male Sprague Dawley rats with 1 % or 0.1 % sodium dodecyl sulfate (SDS) and 4 % sodium deoxycholate (SDC) by orbital shaking (OS) or retrograde perfusion (RP) through the vena cava. We evaluated decellularized diaphragmatic samples by (1) quantitative analysis including DNA quantification and biomechanical testing, (2) qualitative and semiquantitative analysis by proteomics, as well as (3) qualitative assessment with macroscopic and microscopic evaluation by histological staining, immunohistochemistry and scanning electron microscopy. RESULTS: All protocols produced decellularized matrices with micro- and ultramorphologically intact architecture and adequate biomechanical performance with gradual differences. The proteomic profile of decellularized matrices contained a broad range of primal core and ECM-associated proteins similar to native muscle. While no outstanding preference for one singular protocol was determinable, SDS-treated samples showed slightly beneficial properties in comparison to SDC-processed counterparts. Both application modalities proved suitable for DET. CONCLUSION: DET with SDS or SDC via orbital shaking or retrograde perfusion constitute suitable methods to produce adequately decellularized matrices with characteristically preserved proteomic composition. Exposing compositional and functional specifics of variously treated grafts may enable establishing an ideal processing strategy to sustain valuable tissue characteristics and optimize consecutive recellularization. This aims to design an optimal bioscaffold for future transplantation in quantitative and qualitative diaphragmatic defects.


Assuntos
Diafragma , Engenharia Tecidual , Ratos , Animais , Masculino , Engenharia Tecidual/métodos , Proteômica , Ratos Sprague-Dawley , Matriz Extracelular/química , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/metabolismo , Ácido Desoxicólico/análise , Ácido Desoxicólico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...