Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Clin Transl Med ; 14(8): e1798, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39167619

RESUMO

The human adrenal gland is a complex endocrine tissue. Studies on adrenal renewal have been limited to animal models or human foetuses. Enhancing our understanding of adult human adrenal homeostasis is crucial for gaining insights into the pathogenesis of adrenal diseases, such as adrenocortical tumours. Here, we present a comprehensive cellular genomics analysis of the adult human normal adrenal gland, combining single-nuclei RNA sequencing and spatial transcriptome data to reconstruct adrenal gland homeostasis. As expected, we identified primary cells of the various zones of the adrenal cortex and medulla, but we also uncovered additional cell types. They constitute the adrenal microenvironment, including immune cells, mostly composed of a large population of M2 macrophages, and new cell populations, including different subpopulations of vascular-endothelial cells and cortical-neuroendocrine cells. Utilizing spatial transcriptome and pseudotime trajectory analysis, we support evidence of the centripetal dynamics of adrenocortical cell maintenance and the essential role played by Wnt/ß-catenin, sonic hedgehog, and fibroblast growth factor pathways in the adult adrenocortical homeostasis. Furthermore, we compared single-nuclei transcriptional profiles obtained from six healthy adrenal glands and twelve adrenocortical adenomas. This analysis unveiled a notable heterogeneity in cell populations within the adenoma samples. In addition, we identified six distinct adenoma-specific clusters, each with varying distributions based on steroid profiles and tumour mutational status. Overall, our results provide novel insights into adrenal homeostasis and molecular mechanisms potentially underlying early adrenocortical tumorigenesis and/or autonomous steroid secretion. Our cell atlas represents a powerful resource to investigate other adrenal-related pathologies.


Assuntos
Glândulas Suprarrenais , Homeostase , Transcriptoma , Humanos , Transcriptoma/genética , Glândulas Suprarrenais/metabolismo , Homeostase/genética , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Adulto , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia
2.
Mol Cell Endocrinol ; 590: 112272, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759836

RESUMO

Adrenocortical carcinoma (ACC) is a rare yet devastating tumour of the adrenal gland with a molecular pathology that remains incompletely understood. To gain novel insights into the cellular landscape of ACC, we generated single-nuclei RNA sequencing (snRNA-seq) data sets from twelve ACC tumour samples and analysed these alongside snRNA-seq data sets from normal adrenal glands (NAGs). We find the ACC tumour microenvironment to be relatively devoid of immune cells compared to NAG tissues, consistent with known high tumour purity values for ACC as an immunologically "cold" tumour. Our analysis identifies three separate groups of ACC samples that are characterised by different relative compositions of adrenocortical cell types. These include cell populations that are specifically enriched in the most clinically aggressive and hormonally active tumours, displaying hallmarks of reorganised cell mechanobiology and dysregulated steroidogenesis, respectively. We also identified and validated a population of mitotically active adrenocortical cells that strongly overexpress genes POLQ, DIAPH3 and EZH2 to support tumour expansion alongside an LGR4+ progenitor-like or cell-of-origin candidate for adrenocortical carcinogenesis. Trajectory inference suggests the fate adopted by malignant adrenocortical cells upon differentiation is associated with the copy number or allelic balance state of the imprinted DLK1/MEG3 genomic locus, which we verified by assessing bulk tumour DNA methylation status. In conclusion, our results therefore provide new insights into the clinical and cellular heterogeneity of ACC, revealing how genetic perturbations to healthy adrenocortical renewal and zonation provide a molecular basis for disease pathogenesis.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Humanos , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/patologia , Carcinoma Adrenocortical/metabolismo , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/patologia , Neoplasias do Córtex Suprarrenal/metabolismo , Microambiente Tumoral/genética , Análise de Célula Única , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas de Membrana
3.
Oncoimmunology ; 13(1): 2296712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170159

RESUMO

Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.


Assuntos
Colite , Doença Enxerto-Hospedeiro , Camundongos , Animais , Humanos , Colite/induzido quimicamente , Colite/genética , Linfócitos T Reguladores/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/metabolismo
4.
Nat Genet ; 55(5): 880-890, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142849

RESUMO

Extrachromosomal DNAs (ecDNAs) are common in cancer, but many questions about their origin, structural dynamics and impact on intratumor heterogeneity are still unresolved. Here we describe single-cell extrachromosomal circular DNA and transcriptome sequencing (scEC&T-seq), a method for parallel sequencing of circular DNAs and full-length mRNA from single cells. By applying scEC&T-seq to cancer cells, we describe intercellular differences in ecDNA content while investigating their structural heterogeneity and transcriptional impact. Oncogene-containing ecDNAs were clonally present in cancer cells and drove intercellular oncogene expression differences. In contrast, other small circular DNAs were exclusive to individual cells, indicating differences in their selection and propagation. Intercellular differences in ecDNA structure pointed to circular recombination as a mechanism of ecDNA evolution. These results demonstrate scEC&T-seq as an approach to systematically characterize both small and large circular DNA in cancer cells, which will facilitate the analysis of these DNA elements in cancer and beyond.


Assuntos
Neoplasias , Transcriptoma , Humanos , Transcriptoma/genética , DNA , Neoplasias/genética , Oncogenes , DNA Circular/genética
5.
Immunity ; 56(6): 1204-1219.e8, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37160119

RESUMO

During development, lymph node (LN) initiation is coordinated by lymphoid tissue organizer (LTo) cells that attract lymphoid tissue inducer (LTi) cells at strategic positions within the embryo. The identity and function of LTo cells during the initial attraction of LTi cells remain poorly understood. Using lineage tracing, we demonstrated that a subset of Osr1-expressing cells was mesenchymal LTo progenitors. By investigating the heterogeneity of Osr1+ cells, we uncovered distinct mesenchymal LTo signatures at diverse anatomical locations, identifying a common progenitor of mesenchymal LTos and LN-associated adipose tissue. Osr1 was essential for LN initiation, driving the commitment of mesenchymal LTo cells independent of neural retinoic acid, and for LN-associated lymphatic vasculature assembly. The combined action of chemokines CXCL13 and CCL21 was required for LN initiation. Our results redefine the role and identity of mesenchymal organizer cells and unify current views by proposing a model of cooperative cell function in LN initiation.


Assuntos
Organogênese , Fatores de Transcrição , Diferenciação Celular , Linfonodos , Tecido Linfoide
6.
Commun Biol ; 6(1): 40, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639529

RESUMO

Astrocytes are resident glial cells of the central nervous system (CNS) that play complex and heterogeneous roles in brain development, homeostasis and disease. Since their vast involvement in health and disease is becoming increasingly recognized, suitable and reliable tools for studying these cells in vivo and in vitro are of utmost importance. One of the key challenges hereby is to adequately mimic their context-dependent in vivo phenotypes and functions in vitro. To better understand the spectrum of astrocytic variations in defined settings we performed a side-by-side-comparison of murine embryonic stem cell (ESC)-derived astrocytes as well as primary neonatal and adult astrocytes, revealing major differences on a functional and transcriptomic level, specifically on proliferation, migration, calcium signaling and cilium activity. Our results highlight the need to carefully consider the choice of astrocyte origin and phenotype with respect to age, isolation and culture protocols based on the respective biological question.


Assuntos
Astrócitos , Neuroglia , Animais , Camundongos , Astrócitos/fisiologia , Diferenciação Celular , Sistema Nervoso Central , Células-Tronco Embrionárias
7.
Mol Syst Biol ; 18(8): e10961, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35975552

RESUMO

Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Imunidade Inata , Interferons , SARS-CoV-2
8.
Sci Total Environ ; 845: 157321, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839872

RESUMO

Freshwater ecosystems are characterized by complex and highly dynamic microbial communities that are strongly structured by their local environment and biota. Accelerating urbanization and growing city populations detrimentally alter freshwater environments. To determine differences in freshwater microbial communities associated with urbanization, full-length 16S rRNA gene PacBio sequencing was performed in a case study from surface waters and sediments from a wastewater treatment plant, urban and rural lakes in the Berlin-Brandenburg region, Northeast Germany. Water samples exhibited highly habitat specific bacterial communities with multiple genera showing clear urban signatures. We identified potentially harmful bacterial groups associated with environmental parameters specific to urban habitats such as Alistipes, Escherichia/Shigella, Rickettsia and Streptococcus. We demonstrate that urbanization alters natural microbial communities in lakes and, via simultaneous warming and eutrophication and creates favourable conditions that promote specific bacterial genera including potential pathogens. Our findings are evidence to suggest an increased potential for long-term health risk in urbanized waterbodies, at a time of rapidly expanding global urbanization. The results highlight the urgency for undertaking mitigation measures such as targeted lake restoration projects and sustainable water management efforts.


Assuntos
Microbiota , Urbanização , Bactérias , Lagos/microbiologia , RNA Ribossômico 16S/genética
9.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682624

RESUMO

The transcription factor EB (TFEB) promotes protein degradation by the autophagy and lysosomal pathway (ALP) and overexpression of TFEB was suggested for the treatment of ALP-related diseases that often affect the heart. However, TFEB-mediated ALP induction may perturb cardiac stress response. We used adeno-associated viral vectors type 9 (AAV9) to overexpress TFEB (AAV9-Tfeb) or Luciferase-control (AAV9-Luc) in cardiomyocytes of 12-week-old male mice. Mice were subjected to transverse aortic constriction (TAC, 27G; AAV9-Luc: n = 9; AAV9-Tfeb: n = 14) or sham (AAV9-Luc: n = 9; AAV9-Tfeb: n = 9) surgery for 28 days. Heart morphology, echocardiography, gene expression, and protein levels were monitored. AAV9-Tfeb had no effect on cardiac structure and function in sham animals. TAC resulted in compensated left ventricular hypertrophy in AAV9-Luc mice. AAV9-Tfeb TAC mice showed a reduced LV ejection fraction and increased left ventricular diameters. Morphological, histological, and real-time PCR analyses showed increased heart weights, exaggerated fibrosis, and higher expression of stress markers and remodeling genes in AAV9-Tfeb TAC compared to AAV9-Luc TAC. RNA-sequencing, real-time PCR and Western Blot revealed a stronger ALP activation in the hearts of AAV9-Tfeb TAC mice. Cardiomyocyte-specific TFEB-overexpression promoted ALP gene expression during TAC, which was associated with heart failure. Treatment of ALP-related diseases by overexpression of TFEB warrants careful consideration.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Remodelação Ventricular
10.
Biomedicines ; 10(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35625941

RESUMO

Cell therapies for muscle wasting disorders are on the verge of becoming a realistic clinical perspective. Muscle precursor cells derived from human induced pluripotent stem cells (hiPSCs) represent the key to unrestricted cell numbers indispensable for the treatment of generalized muscle wasting such as cachexia or intensive care unit (ICU)-acquired weakness. We asked how the cell of origin influences efficacy and molecular properties of hiPSC-derived muscle progenitor cells. We generated hiPSCs from primary muscle stem cells and from peripheral blood mononuclear cells (PBMCs) of the same donors (n = 4) and compared their molecular profiles, myogenic differentiation potential, and ability to generate new muscle fibers in vivo. We show that reprogramming into hiPSCs from primary muscle stem cells was faster and 35 times more efficient than from blood cells. Global transcriptome comparison revealed significant differences, but differentiation into induced myogenic cells using a directed transgene-free approach could be achieved with muscle- and PBMC-derived hiPSCs, and both cell types generated new muscle fibers in vivo. Differences in myogenic differentiation efficiency were identified with hiPSCs generated from individual donors. The generation of muscle-stem-cell-derived hiPSCs is a fast and economic method to obtain unrestricted cell numbers for cell-based therapies in muscle wasting disorders, and in this aspect are superior to blood-derived hiPSCs.

11.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35482418

RESUMO

Insight into processes that determine CD8+ T cell memory formation has been obtained from infection models. These models are biased toward an inflammatory milieu and often use high-avidity CD8+ T cells in adoptive-transfer procedures. It is unclear whether these conditions mimic the differentiation processes of an endogenous repertoire that proceed upon noninflammatory conditions prevailing in premalignant tumor lesions. We examined the role of cytolytic capacity on CD8+ T cell fate decisions when primed by tumor cells or by minor histocompatibility antigen-mismatched leukocytes. CD8+ memory commitment was analyzed in Ebag9-deficient mice that exhibited enhanced tumor cell lysis. This property endowed Ebag9-/- mice with extended control of Tcl-1 oncogene-induced chronic lymphocytic leukemia progression. In Ebag9-/- mice, an expanded memory population was obtained for anti-HY and anti-SV-40 T antigen-specific T cells, despite unchanged effector frequencies in the primary response. By comparing the single-cell transcriptomes of CD8+ T cells responding to tumor cell vaccination, we found differential distribution of subpopulations between Ebag9+/+ and Ebag9-/- T cells. In Ebag9-/- cells, these larger clusters contained genes encoding transcription factors regulating memory cell differentiation and anti-apoptotic gene functions. Our findings link EBAG9-controlled cytolytic activity and the commitment to the CD8+ memory lineage.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Transferência Adotiva , Animais , Camundongos , Antígenos de Histocompatibilidade Menor
12.
Nat Commun ; 13(1): 1577, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332152

RESUMO

Helicobacter pylori causes gastric inflammation, gland hyperplasia and is linked to gastric cancer. Here, we studied the interplay between gastric epithelial stem cells and their stromal niche under homeostasis and upon H. pylori infection. We find that gastric epithelial stem cell differentiation is orchestrated by subsets of stromal cells that either produce BMP inhibitors in the gland base, or BMP ligands at the surface. Exposure to BMP ligands promotes a feed-forward loop by inducing Bmp2 expression in the epithelial cells themselves, enforcing rapid lineage commitment to terminally differentiated mucous pit cells. H. pylori leads to a loss of stromal and epithelial Bmp2 expression and increases expression of BMP inhibitors, promoting self-renewal of stem cells and accumulation of gland base cells, which we mechanistically link to IFN-γ signaling. Mice that lack IFN-γ signaling show no alterations of BMP gradient upon infection, while exposure to IFN-γ resembles H. pylori-driven mucosal responses.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Inflamação/metabolismo , Ligantes , Camundongos
13.
Brain ; 145(3): 964-978, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34919646

RESUMO

Idiopathic Parkinson's disease is characterized by a progressive loss of dopaminergic neurons, but the exact disease aetiology remains largely unknown. To date, Parkinson's disease research has mainly focused on nigral dopaminergic neurons, although recent studies suggest disease-related changes also in non-neuronal cells and in midbrain regions beyond the substantia nigra. While there is some evidence for glial involvement in Parkinson's disease, the molecular mechanisms remain poorly understood. The aim of this study was to characterize the contribution of all cell types of the midbrain to Parkinson's disease pathology by single-nuclei RNA sequencing and to assess the cell type-specific risk for Parkinson's disease using the latest genome-wide association study. We profiled >41 000 single-nuclei transcriptomes of post-mortem midbrain from six idiopathic Parkinson's disease patients and five age-/sex-matched controls. To validate our findings in a spatial context, we utilized immunolabelling of the same tissues. Moreover, we analysed Parkinson's disease-associated risk enrichment in genes with cell type-specific expression patterns. We discovered a neuronal cell cluster characterized by CADPS2 overexpression and low TH levels, which was exclusively present in idiopathic Parkinson's disease midbrains. Validation analyses in laser-microdissected neurons suggest that this cluster represents dysfunctional dopaminergic neurons. With regard to glial cells, we observed an increase in nigral microglia in Parkinson's disease patients. Moreover, nigral idiopathic Parkinson's disease microglia were more amoeboid, indicating an activated state. We also discovered a reduction in idiopathic Parkinson's disease oligodendrocyte numbers with the remaining cells being characterized by a stress-induced upregulation of S100B. Parkinson's disease risk variants were associated with glia- and neuron-specific gene expression patterns in idiopathic Parkinson's disease cases. Furthermore, astrocytes and microglia presented idiopathic Parkinson's disease-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signalling. While reactive patient astrocytes showed CD44 overexpression, idiopathic Parkinson's disease microglia revealed a pro-inflammatory trajectory characterized by elevated levels of IL1B, GPNMB and HSP90AA1. Taken together, we generated the first single-nuclei RNA sequencing dataset from the idiopathic Parkinson's disease midbrain, which highlights a disease-specific neuronal cell cluster as well as 'pan-glial' activation as a central mechanism in the pathology of the movement disorder. This finding warrants further research into inflammatory signalling and immunomodulatory treatments in Parkinson's disease.


Assuntos
Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Glicoproteínas de Membrana/metabolismo , Mesencéfalo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
14.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698766

RESUMO

Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Hedgehog/metabolismo , Prosencéfalo/metabolismo , Receptor Notch1/metabolismo , Animais , Proteínas de Ciclo Celular/deficiência , Diferenciação Celular , Embrião de Mamíferos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/metabolismo , Humanos , Camundongos , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptor Patched-1/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/citologia , Prosencéfalo/embriologia , Transdução de Sinais
15.
Plant J ; 108(3): 859-869, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390289

RESUMO

Single-cell genomics provides unprecedented potential for research on plant development and environmental responses. Here, we introduce a generic procedure for plant nucleus isolation combined with nanowell-based library preparation. Our method enables the transcriptome analysis of thousands of individual plant nuclei. It serves as an alternative to the use of protoplast isolation, which is currently a standard methodology for plant single-cell genomics, although it can be challenging for some plant tissues. We show the applicability of our nucleus isolation method by using different plant materials from different species. The potential of our single-nucleus RNA sequencing method is shown through the characterization of transcriptomes of seedlings and developing flowers from Arabidopsis thaliana. We evaluated the transcriptome dynamics during the early stages of anther development, identified stage-specific activities of transcription factors regulating this process, and predicted potential target genes of these transcription factors. Our nucleus isolation procedure can be applied in different plant species and tissues, thus expanding the toolkit for plant single-cell genomics experiments.


Assuntos
Arabidopsis/genética , Flores/genética , Análise de Sequência de RNA/instrumentação , Análise de Sequência de RNA/métodos , Núcleo Celular/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Inflorescência/genética , RNA de Plantas , RNA Nuclear Pequeno , Reprodutibilidade dos Testes , Plântula/genética
16.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039707

RESUMO

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Mutação , Organoides/metabolismo , Fatores de Transcrição/metabolismo
17.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33148793

RESUMO

Herpes simplex virus 1 (HSV-1) induces a profound host shutoff during lytic infection. The virion host shutoff (vhs) protein plays a key role in this process by efficiently cleaving host and viral mRNAs. Furthermore, the onset of viral DNA replication is accompanied by a rapid decline in host transcriptional activity. To dissect relative contributions of both mechanisms and elucidate gene-specific host transcriptional responses throughout the first 8 h of lytic HSV-1 infection, we used transcriptome sequencing of total, newly transcribed (4sU-labeled) and chromatin-associated RNA in wild-type (WT) and Δvhs mutant infection of primary human fibroblasts. Following virus entry, vhs activity rapidly plateaued at an elimination rate of around 30% of cellular mRNAs per hour until 8 h postinfection (p.i.). In parallel, host transcriptional activity dropped to 10 to 20%. While the combined effects of both phenomena dominated infection-induced changes in total RNA, extensive gene-specific transcriptional regulation was observable in chromatin-associated RNA and was surprisingly concordant between WT and Δvhs infections. Both induced strong transcriptional upregulation of a small subset of genes that were poorly expressed prior to infection but already primed by H3K4me3 histone marks at their promoters. Most interestingly, analysis of chromatin-associated RNA revealed vhs-nuclease-activity-dependent transcriptional downregulation of at least 150 cellular genes, in particular of many integrin adhesome and extracellular matrix components. This was accompanied by a vhs-dependent reduction in protein levels by 8 h p.i. for many of these genes. In summary, our study provides a comprehensive picture of the molecular mechanisms that govern cellular RNA metabolism during the first 8 h of lytic HSV-1 infection.IMPORTANCE The HSV-1 virion host shutoff (vhs) protein efficiently cleaves both host and viral mRNAs in a translation-dependent manner. In this study, we model and quantify changes in vhs activity, as well as virus-induced global loss of host transcriptional activity, during productive HSV-1 infection. In general, HSV-1-induced alterations in total RNA levels were dominated by these two global effects. In contrast, chromatin-associated RNA depicted gene-specific transcriptional changes. This revealed highly concordant transcriptional changes in WT and Δvhs infections, confirmed DUX4 as a key transcriptional regulator in HSV-1 infection, and identified vhs-dependent transcriptional downregulation of the integrin adhesome and extracellular matrix components. The latter explained seemingly gene-specific effects previously attributed to vhs-mediated mRNA degradation and resulted in a concordant loss in protein levels by 8 h p.i. for many of the respective genes.


Assuntos
Regulação Viral da Expressão Gênica , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , RNA Viral/metabolismo , Ribonucleases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Fibroblastos/metabolismo , Fibroblastos/virologia , Herpes Simples/genética , Herpes Simples/patologia , Herpes Simples/virologia , Humanos , Biossíntese de Proteínas , Proteoma , RNA Viral/genética , Ribonucleases/genética , Transcriptoma , Proteínas Virais/genética
18.
Nat Commun ; 11(1): 6422, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33349639

RESUMO

Wnt/ß-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5+ stem cells and human colon carcinomas with increased nuclear ß-catenin. High levels of MLL1 are associated with poor survival of colon cancer patients. The genetic ablation of Mll1 in mice prevents Wnt/ß-catenin-driven adenoma formation from Lgr5+ intestinal stem cells. Ablation of Mll1 decreases the self-renewal of human colon cancer spheres and halts tumor growth of xenografts. Mll1 controls the expression of stem cell genes including the Wnt/ß-catenin target gene Lgr5. Upon the loss of Mll1, histone methylation at the stem cell promoters switches from activating H3K4 tri-methylation to repressive H3K27 tri-methylation, indicating that Mll1 sustains stem cell gene expression by antagonizing gene silencing through polycomb repressive complex 2 (PRC2)-mediated H3K27 tri-methylation. Transcriptome profiling of Wnt-mutated intestinal tumor-initiating cells reveals that Mll1 regulates Gata4/6 transcription factors, known to sustain cancer stemness and to control goblet cell differentiation. Our results demonstrate that Mll1 is an essential epigenetic regulator of Wnt/ß-catenin-induced intestinal tumorigenesis and cancer stemness.


Assuntos
Carcinogênese/genética , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Animais , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Intestinos/patologia , Lisina/metabolismo , Metilação , Camundongos Nus , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/genética , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
19.
Nat Commun ; 11(1): 5319, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087700

RESUMO

Arterial networks enlarge in response to increase in tissue metabolism to facilitate flow and nutrient delivery. Typically, the transition of a growing artery with a small diameter into a large caliber artery with a sizeable diameter occurs upon the blood flow driven change in number and shape of endothelial cells lining the arterial lumen. Here, using zebrafish embryos and endothelial cell models, we describe an alternative, flow independent model, involving enlargement of arterial endothelial cells, which results in the formation of large diameter arteries. Endothelial enlargement requires the GEF1 domain of the guanine nucleotide exchange factor Trio and activation of Rho-GTPases Rac1 and RhoG in the cell periphery, inducing F-actin cytoskeleton remodeling, myosin based tension at junction regions and focal adhesions. Activation of Trio in developing arteries in vivo involves precise titration of the Vegf signaling strength in the arterial wall, which is controlled by the soluble Vegf receptor Flt1.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Remodelação Vascular/fisiologia , Animais , Animais Geneticamente Modificados , Tamanho Celular , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Cardiovasculares , Fator de Crescimento Placentário/genética , Fator de Crescimento Placentário/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Remodelação Vascular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/fisiologia
20.
Genes Dev ; 34(21-22): 1474-1492, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060136

RESUMO

Macrophages polarize into functionally distinct subtypes while responding to microenvironmental cues. The identity of proximal transcription factors (TFs) downstream from the polarization signals are known, but their activity is typically transient, failing to explain the long-term, stable epigenomic programs developed. Here, we mapped the early and late epigenomic changes of interleukin-4 (IL-4)-induced alternative macrophage polarization. We identified the TF, early growth response 2 (EGR2), bridging the early transient and late stable gene expression program of polarization. EGR2 is a direct target of IL-4-activated STAT6, having broad action indispensable for 77% of the induced gene signature of alternative polarization, including its autoregulation and a robust, downstream TF cascade involving PPARG. Mechanistically, EGR2 binding results in chromatin opening and the recruitment of chromatin remodelers and RNA polymerase II. Egr2 induction is evolutionarily conserved during alternative polarization of mouse and human macrophages. In the context of tissue resident macrophages, Egr2 expression is most prominent in the lung of a variety of species. Thus, EGR2 is an example of an essential and evolutionarily conserved broad acting factor, linking transient polarization signals to stable epigenomic and transcriptional changes in macrophages.


Assuntos
Polaridade Celular/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Epigênese Genética/genética , Macrófagos/citologia , Fator de Transcrição STAT6/metabolismo , Ativação Transcricional/genética , Animais , Mapeamento Cromossômico , Sequência Conservada , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Interleucina-4/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Domínios e Motivos de Interação entre Proteínas/genética , Fator de Transcrição STAT6/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...