Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 18(1): 57, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876168

RESUMO

BACKGROUND: Little is known about the extent of drug entry into developing brain, when administered to pregnant and lactating women. Lithium is commonly prescribed for bipolar disorder. Here we studied transfer of lithium given to dams, into blood, brain and cerebrospinal fluid (CSF) in embryonic and postnatal animals as well as adults. METHODS: Lithium chloride in a clinically relevant dose (3.2 mg/kg body weight) was injected intraperitoneally into pregnant (E15-18) and lactating dams (birth-P16/17) or directly into postnatal pups (P0-P16/17). Acute treatment involved a single injection; long-term treatment involved twice daily injections for the duration of the experiment. Following terminal anaesthesia blood plasma, CSF and brains were collected. Lithium levels and brain distribution were measured using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry and total lithium levels were confirmed by Inductively Coupled Plasma-Mass Spectrometry. RESULTS: Lithium was detected in blood, CSF and brain of all fetal and postnatal pups following lithium treatment of dams. Its concentration in pups' blood was consistently below that in maternal blood (30-35%) indicating significant protection by the placenta and breast tissue. However, much of the lithium that reached the fetus entered its brain. Levels of lithium in plasma fluctuated in different treatment groups but its concentration in CSF was stable at all ages, in agreement with known stable levels of endogenous ions in CSF. There was no significant increase of lithium transfer into CSF following application of Na+/K+ ATPase inhibitor (digoxin) in vivo, indicating that lithium transfer across choroid plexus epithelium is not likely to be via the Na+/K+ ATPase mechanism, at least early in development. Comparison with passive permeability markers suggested that in acute experiments lithium permeability was less than expected for diffusion but similar in long-term experiments at P2. CONCLUSIONS: Information obtained on the distribution of lithium in developing brain provides a basis for studying possible deleterious effects on brain development and behaviour in offspring of mothers undergoing lithium therapy.


Assuntos
Antimaníacos/farmacocinética , Sangue , Encéfalo , Líquido Cefalorraquidiano , Cloreto de Lítio/farmacocinética , Troca Materno-Fetal , Leite Humano , Animais , Animais Recém-Nascidos , Animais Lactentes , Antimaníacos/administração & dosagem , Antimaníacos/sangue , Antimaníacos/líquido cefalorraquidiano , Plexo Corióideo , Embrião de Mamíferos , Feminino , Lactação , Cloreto de Lítio/administração & dosagem , Cloreto de Lítio/sangue , Cloreto de Lítio/líquido cefalorraquidiano , Gravidez , Ratos , Ratos Sprague-Dawley
2.
J Comp Neurol ; 496(1): 13-26, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16528724

RESUMO

We have evaluated a small water-soluble molecule, biotin ethylenediamine (BED, 286 Da), as a permeability tracer across the blood-brain barrier. This molecule was found to have suitable characteristics in that it is stable in plasma, has low plasma protein binding, and appears to behave in a similar manner across brain barriers as established by permeability markers such as sucrose. BED, together with a 3000-Da biotin-dextran (BDA3000), was used to investigate the effectiveness of tight junctions in cortical vessels during development and adulthood of a marsupial opossum (Monodelphis domestica). Marsupial species are born at an early stage of brain development when cortical vessels are just beginning to appear. The tracers were administered systemically to opossums at various ages and localized in brains with light and electron microscopy. In adults, the tight junctions restricted the movement of both tracers. In neonates, as soon as vessels grow into the neocortex, their tight junctions are functionally restrictive, a finding supported by the presence of claudin-5 in endothelial cells. However, both tracers are also found within brain extracellular space soon after intraperitoneal administration. The main route of entry for the tracers into immature neocortex appears to be via the cerebrospinal fluid over the outer (subarachnoid) and inner (ventricular) surfaces of the brain. These experiments demonstrate that the previously described higher permeability of barriers to small molecules in the developing brain does not seem to be due to leakiness of cerebral endothelial tight junctions, but to a route of entry probably via the choroid plexuses and cerebrospinal fluid.


Assuntos
Barreira Hematoencefálica/crescimento & desenvolvimento , Capilares/crescimento & desenvolvimento , Artérias Cerebrais/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Monodelphis/crescimento & desenvolvimento , Junções Íntimas/metabolismo , Animais , Animais Recém-Nascidos , Biotina/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Capilares/efeitos dos fármacos , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/metabolismo , Líquido Cefalorraquidiano/efeitos dos fármacos , Líquido Cefalorraquidiano/metabolismo , Claudina-5 , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/ultraestrutura , Etilenodiaminas/farmacocinética , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Peso Molecular , Monodelphis/metabolismo , Ratos , Solubilidade/efeitos dos fármacos , Espaço Subaracnóideo/efeitos dos fármacos , Espaço Subaracnóideo/metabolismo , Espaço Subaracnóideo/ultraestrutura , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/ultraestrutura
3.
J Comp Neurol ; 466(3): 422-44, 2003 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-14556298

RESUMO

These studies define the time table and origin of supraspinal axons regenerating across a complete spinal transection in postnatal Monodelphis domestica. After lumbar (L1) spinal cord injection of fluorophore-dextran amine conjugate on postnatal (P) day 4, a consistent number of neurons could be labeled. The numbers of labeled neurons remained stable for several weeks, but subsequently declined by P60 in control animals and by P35 in animals with complete spinal transection (T4-T6) performed at P7. In control animals, 25-40% of neurons labeled with a fluorophore injected (L1) at P4 could also be double-labeled by a second fluorophore injected (T8-T10) at different older ages. In spinally transected animals, total numbers of neurons labeled with the second marker were initially lower compared with age-matched controls, but were not significantly different by 3 weeks after injury. The proportion of double-labeled neurons in spinally transected animals increased from approximately 2% 1 week after injury (P14) to approximately 50% by P60, indicating that a substantial proportion of neurons with axons transected at P7 is able to regenerate and persist into adulthood. However, the proportion of axons originating from regenerating neurons made only a small contribution at older ages to total numbers of fibers growing through the injury site, because much of development of the spinal cord occurs after P7. Evidence was obtained that degenerating neurons with both apoptotic and necrotic morphologies were present in brainstem nuclei; the number of neurons with necrotic morphology was much greater in the brainstem of animals with spinal cords transected at P7.


Assuntos
Axônios/fisiologia , Tronco Encefálico/fisiologia , Regeneração Nervosa/fisiologia , Gambás/fisiologia , Traumatismos da Medula Espinal , Fatores Etários , Animais , Animais Recém-Nascidos , Axônios/química , Tronco Encefálico/química , Vias Neurais/química , Vias Neurais/fisiologia , Vértebras Torácicas
4.
J Comp Neurol ; 460(4): 451-64, 2003 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-12717706

RESUMO

The structural and functional development of the choroid plexuses, the site of the blood-cerebrospinal fluid (CSF) barrier, in an opossum (Monodelphis domestica) was studied. Marsupial species are extremely immature at birth compared with more conventional eutherian species. Choroid plexus tissue of each brain ventricle, from early stages of development, was collected for light and electron microscopy. During development, the choroidal epithelium changes from a pseudostratified to a cuboidal layer. Individual epithelial cells appear to go through a similar maturation process even though the timing is different between and within each plexus. The ultrastructural changes during development in the choroidal epithelial cells consist of an increase in the number of mitochondria and microvilli, and changes in structure of endoplasmic reticulum. There are also changes in the core of plexuses with age. In contrast, the structure of the tight junctions between epithelial cells does not appear to change with maturation. In addition, the route of penetration for lipid insoluble molecules from blood to CSF across the choroid plexuses was examined using a small biotin-dextran. This showed that the tight junctions already form a functional barrier in early development by preventing the paracellular movement of the tracer. Intracellular staining shows that there may be a transcellular route for these molecules through the epithelial cells from blood to CSF. Apart from lacking a glycogen-rich stage, cellular changes in the developing opossum plexus seem to be similar to those in other species, demonstrating that this is a good model for studies of mammalian choroid plexus development.


Assuntos
Plexo Corióideo/citologia , Plexo Corióideo/crescimento & desenvolvimento , Gambás/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Microscopia Eletrônica , Gambás/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...