Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(1): L013101, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974498

RESUMO

To simulate elastic turbulence, where viscoelasticity dominates, numerical solvers introduce an artificial stress diffusivity term to handle the steep polymer stress gradients that ensue. This has recently been shown [A. Gupta and D. Vincenzi, J. Fluid Mech. 870, 405 (2019)0022-112010.1017/jfm.2019.224; V. Dzanic et al., J. Fluid Mech. 937, A31 (2022)0022-112010.1017/jfm.2022.103] to introduce unphysical artifacts with a detrimental impact on simulations. In this Letter, we propose that artificial diffusion is limited to regions where stress gradients are steep instead of seeking the zero-diffusivity limit. Through the cellular forcing and four-roll mill problem, we demonstrate that this modified artificial diffusivity is devoid of unphysical artifacts, allowing all features of elastic turbulence to be retained. Results are found to conform with direct simulations, reducing the impact of artificial diffusivity from a qualitative scale to a quantitative scale while only requiring a fraction of the numerical resolution.

2.
Atmos Pollut Res ; 13(7): 101473, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35692900

RESUMO

The spread of respiratory diseases via aerosol particles in indoor settings is of significant concern. The SARS-CoV-2 virus has been found to spread widely in confined enclosures like hotels, hospitals, cruise ships, prisons, and churches. Particles exhaled from a person indoors can remain suspended long enough for increasing the opportunity for particles to spread spatially. Careful consideration of the ventilation system is essential to minimise the spread of particles containing infectious pathogens. Previous studies have shown that indoor airflow induced by opened windows would minimise the spread of particles. However, how outdoor airflow through an open window influences the indoor airflow has not been considered. The aim of this study is to provide a clear understanding of the indoor particle spread across multiple rooms, in a situation similar to what is found in quarantine hotels and cruise ships, using a combination of HVAC (Heating, Ventilation and Air-Conditioning) ventilation and an opening window. Using a previously validated mathematical model, we used 3D CFD (computational fluid dynamics) simulations to investigate to what extent different indoor airflow scenarios contribute to the transport of a single injection of particles ( 1 . 3 µ m ) in a basic 3D multi-room indoor environment. Although this study is limited to short times, we demonstrate that in certain conditions approximately 80% of the particles move from one room to the corridor and over 60% move to the nearby room within 5 to 15 s. Our results provide additional information to help identifying relevant recommendations to limit particles from spreading in enclosures.

3.
Biomech Model Mechanobiol ; 21(3): 899-917, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35412191

RESUMO

In this work, a numerical model that enables simulation of the deformation and flow behaviour of differently aged Red Blood Cells (RBCs) is developed. Such cells change shape and decrease in deformability as they age, thus impacting their ability to pass through the narrow capillaries in the body. While the body filters unviable cells from the blood naturally, cell aging poses key challenges for blood stored for transfusions. Therefore, understanding the influence RBC morphology and deformability have on their flow is vital. While several existing models represent young Discocyte RBC shapes well, a limited number of numerical models are developed to model aged RBC morphologies like Stomatocytes and Echinocytes. The existing models are also limited to shear and stretching simulations. Flow characteristics of these morphologies are yet to be investigated. This paper aims to develop a new membrane formulation for the numerical modelling of Stomatocyte, Discocytes and Echinocyte RBC morphologies to investigate their deformation and flow behaviour. The model used represents blood plasma using the Lattice Boltzmann Method (LBM) and the RBC membrane using the discrete element method (DEM). The membrane and the plasma are coupled by the Immersed Boundary Method (IBM). Previous LBM-IBM-DEM formulations represent RBC membrane response based on forces generated from changes in the local area, local length, local bending, and cell volume. In this new model, two new force terms are added: the local area difference force and the local curvature force, which are specially incorporated to model the flow and deformation behaviour of Stomatocytes and Echinocytes. To verify the developed model, the deformation behaviour of the three types of RBC morphologies are compared to well-characterised stretching and shear experiments. The flow modelling capabilities of the method are then demonstrated by modelling the flow of each cell through a narrow capillary. The developed model is found to be as accurate as benchmark Smoothed Particle Hydrodynamics (SPH) approaches while being significantly more computationally efficient.


Assuntos
Deformação Eritrocítica , Eritrócitos , Tamanho Celular , Simulação por Computador , Hidrodinâmica
4.
Phys Rev E ; 101(3-1): 033303, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32290007

RESUMO

Higher-order lattice Boltzmann (LB) pseudopotential models have great potential for solving complex fluid dynamics in various areas of modern science. The discreteness of the lattice discretization makes these models an attractive choice due to their flexibility, capacity to capture hydrodynamic details, and inherent adaptability to parallel computations. Despite those advantages, the discreteness makes high-order LB models difficult to apply due to the larger lattice structure, for which basic fundamental properties, namely diffusion coefficient and contact angle, remain unknown. This work addresses this by providing general continuum solutions for those two basic properties and demonstrating these solutions to compare favorably against known theory. Various high-order LB models are shown to reproduce the sinusoidal decay of a binary miscible mixture accurately and consistently. Furthermore, these models are shown to reproduce neutral, hydrophobic, and hydrophilic contact angles. Discrete differences are shown to exist, which are captured at the discrete level and confirmed through droplet shape analysis. This work provides practical tools that allow for high-order LB pseudopotential models to be used to simulate multicomponent flows.

5.
Biomech Model Mechanobiol ; 19(5): 1827-1843, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32100179

RESUMO

The red blood cell (RBC) deformability is a critical aspect, and assessing the cell deformation characteristics is essential for better diagnostics of healthy and deteriorating RBCs. There is a need to explore the connection between the cell deformation characteristics, cell morphology, disease states, storage lesion and cell shape-transformation conditions for better diagnostics and treatments. A numerical approach inspired from the previous research for RBC morphology predictions and for analysis of RBC deformations is proposed for the first time, to investigate the deformation characteristics of different RBC morphologies. The present study investigates the deformability characteristics of stomatocyte, discocyte and echinocyte morphologies during optical tweezers stretching and provides the opportunity to study the combined contribution of cytoskeletal spectrin network and the lipid-bilayer during RBC deformation. The proposed numerical approach predicts agreeable deformation characteristics of the healthy discocyte with the analogous experimental observations and is extended to further investigate the deformation characteristics of stomatocyte and echinocyte morphologies. In particular, the computer simulations are performed to investigate the influence of direct stretching forces on different equilibrium cell morphologies on cell spectrin link extensions and cell elongation index, along with a parametric analysis on membrane shear modulus, spectrin link extensibility, bending modulus and RBC membrane-bead contact diameter. The results agree with the experimentally observed stiffer nature of stomatocyte and echinocyte with respect to a healthy discocyte at experimentally determined membrane characteristics and suggest the preservation of relevant morphological characteristics, changes in spectrin link densities and the primary contribution of cytoskeletal spectrin network on deformation behaviour of stomatocyte, discocyte and echinocyte morphologies during optical tweezers stretching deformation. The numerical approach presented here forms the foundation for investigations into deformation characteristics and recoverability of RBCs undergoing storage lesion.


Assuntos
Forma Celular , Deformação Eritrocítica , Eritrócitos/citologia , Pinças Ópticas , Módulo de Elasticidade , Membrana Eritrocítica/fisiologia , Humanos , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes , Espectrina/metabolismo , Termodinâmica
6.
Phys Rev E ; 99(6-1): 063318, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330592

RESUMO

In this work we address the application of pseudopotentials directly on high-order lattice Boltzmann models. We derive a general expression for the pressure tensor on high-order lattices considering all nonideal interactions, including intra- and intermolecular interactions, following the discrete lattice theory introduced by X. Shan [Phys. Rev. E 77, 066702 (2008)PLEEE81539-375510.1103/PhysRevE.77.066702]. From the derived expression, a generalized continuum approximation, truncated at fourth-order isotropy, is obtained that is readily applicable to high-order lattices. With this, we demonstrate that high-order lattice models with pseudopotentials can satisfy thermodynamic consistency. The derived generalized expression and continuum approximation are validated for the case of a flat interface and compared against the standard definition available from the literature. The generalized expression is also shown to accurately reproduce the Laplace experiment for a variety of high-order lattice structures. This work sets the preliminary steps towards the application of high-order lattice models for simulating nonideal fluid mixtures.

7.
Soft Matter ; 15(5): 901-916, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30543256

RESUMO

Numerical modelling has emerged as a powerful and effective tool to study various dynamic behaviours of biological matter. Such numerical modelling tools have contributed to the optimisations of food drying parameters leading to higher quality end-products in the field of food engineering. In this context, one of the most recent developments is the meshfree-based numerical models, which have demonstrated enhanced capabilities to model cellular deformations during drying, providing many benefits compared to conventional grid-based modelling approaches. However, the potential extension of this method for simulating bulk level tissues has been a challenge due to the increased requirement for higher computational time and resources. As a solution for this, by incorporating meshfree features, a novel coarse-grained multiscale numerical model is proposed in this work to predict bulk level (macroscale) deformations of food-plant tissues during drying. Accordingly, realistic simulation of morphological changes of apple tissues can now be performed with just 2% of the previous computational time in microscale and macroscale simulations can also be conducted. Compared to contemporary multiscale models, this modelling approach provides more convenient computational implementation as well. Thus, this novel approach can be recommended for efficiently and accurately simulating morphological changes of cellular materials undergoing drying processes, while confirming its potential future expansion to efficiently and accurately predict morphological changes of heterogeneous plant tissues in different spatial scales.


Assuntos
Dessecação , Modelos Moleculares , Plantas Comestíveis/química , Plantas Comestíveis/citologia
8.
ScientificWorldJournal ; 2015: 843068, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25879074

RESUMO

Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2 concentration leads to better performance, that is, stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...