Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891071

RESUMO

Increasing evidence shows that the administration of mesenchymal stem cells (MSCs) is a promising option for various brain diseases, including ischemic stroke. Studies have demonstrated that MSC transplantation after ischemic stroke provides beneficial effects, such as neural regeneration, partially by activating endogenous neural stem/progenitor cells (NSPCs) in conventional neurogenic zones, such as the subventricular and subgranular zones. However, whether MSC transplantation regulates the fate of injury-induced NSPCs (iNSPCs) regionally activated at injured regions after ischemic stroke remains unclear. Therefore, mice were subjected to ischemic stroke, and mCherry-labeled human MSCs (h-MSCs) were transplanted around the injured sites of nestin-GFP transgenic mice. Immunohistochemistry of brain sections revealed that many GFP+ cells were observed around the grafted sites rather than in the regions in the subventricular zone, suggesting that transplanted mCherry+ h-MSCs stimulated GFP+ locally activated endogenous iNSPCs. In support of these findings, coculture studies have shown that h-MSCs promoted the proliferation and neural differentiation of iNSPCs extracted from ischemic areas. Furthermore, pathway analysis and gene ontology analysis using microarray data showed that the expression patterns of various genes related to self-renewal, neural differentiation, and synapse formation were changed in iNSPCs cocultured with h-MSCs. We also transplanted h-MSCs (5.0 × 104 cells/µL) transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion. Compared with phosphate-buffered saline-injected controls, h-MSC transplantation displayed significantly improved neurological functions. These results suggest that h-MSC transplantation improves neurological function after ischemic stroke in part by regulating the fate of iNSPCs.


Assuntos
AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Células-Tronco Neurais , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , AVC Isquêmico/terapia , AVC Isquêmico/metabolismo , Diferenciação Celular , Camundongos Transgênicos , Masculino , Proliferação de Células , Neurogênese , Camundongos Endogâmicos C57BL
2.
Cells ; 12(16)2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37626850

RESUMO

We previously demonstrated that neural stem/progenitor cells (NSPCs) were induced within and around the ischemic areas in a mouse model of ischemic stroke. These injury/ischemia-induced NSPCs (iNSPCs) differentiated to electrophysiologically functional neurons in vitro, indicating the presence of a self-repair system following injury. However, during the healing process after stroke, ischemic areas were gradually occupied by inflammatory cells, mainly microglial cells/macrophages (MGs/MΦs), and neurogenesis rarely occurred within and around the ischemic areas. Therefore, to achieve neural regeneration by utilizing endogenous iNSPCs, regulation of MGs/MΦs after an ischemic stroke might be necessary. To test this hypothesis, we used iNSPCs isolated from the ischemic areas after a stroke in our mouse model to investigate the role of MGs/MΦs in iNSPC regulation. In coculture experiments, we show that the presence of MGs/MΦs significantly reduces not only the proliferation but also the differentiation of iNSPCs toward neuronal cells, thereby preventing neurogenesis. These effects, however, are mitigated by MG/MΦ depletion using clodronate encapsulated in liposomes. Additionally, gene ontology analysis reveals that proliferation and neuronal differentiation are negatively regulated in iNSPCs cocultured with MGs/MΦs. These results indicate that MGs/MΦs negatively impact neurogenesis via iNSPCs, suggesting that the regulation of MGs/MΦs is essential to achieve iNSPC-based neural regeneration following an ischemic stroke.


Assuntos
AVC Isquêmico , Células-Tronco Neurais , Acidente Vascular Cerebral , Animais , Camundongos , Microglia , Diferenciação Celular , Modelos Animais de Doenças , Proliferação de Células , Encéfalo
3.
Stem Cells Transl Med ; 12(6): 400-414, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37221140

RESUMO

We recently demonstrated that injury/ischemia-induced multipotent stem cells (iSCs) develop within post-stroke human brains. Because iSCs are stem cells induced under pathological conditions, such as ischemic stroke, the use of human brain-derived iSCs (h-iSCs) may represent a novel therapy for stroke patients. We performed a preclinical study by transplanting h-iSCs transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion (MCAO). Compared with PBS-treated controls, h-iSC transplantation significantly improved neurological function. To identify the underlying mechanism, green fluorescent protein (GFP)-labeled h-iSCs were transplanted into post-stroke mouse brains. Immunohistochemistry revealed that GFP+ h-iSCs survived around the ischemic areas and some differentiated into mature neuronal cells. To determine the effect on endogenous neural stem/progenitor cells (NSPCs) by h-iSC transplantation, mCherry-labeled h-iSCs were administered to Nestin-GFP transgenic mice which were subjected to MCAO. As a result, many GFP+ NSPCs were observed around the injured sites compared with controls, indicating that mCherry+ h-iSCs activate GFP+ endogenous NSPCs. In support of these findings, coculture studies revealed that the presence of h-iSCs promotes the proliferation of endogenous NSPCs and increases neurogenesis. In addition, coculture experiments indicated neuronal network formation between h-iSC- and NSPC-derived neurons. These results suggest that h-iSCs exert positive effects on neural regeneration through not only neural replacement by grafted cells but also neurogenesis by activated endogenous NSPCs. Thus, h-iSCs have the potential to be a novel source of cell therapy for stroke patients.


Assuntos
Isquemia Encefálica , Células-Tronco Neurais , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/patologia , Células-Tronco Multipotentes , Encéfalo/patologia , Neurogênese/fisiologia , Camundongos Transgênicos
4.
IBRO Neurosci Rep ; 14: 253-263, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880055

RESUMO

Rehabilitative exercise following a brain stroke has beneficial effects on the morphological plasticity of neurons. Particularly, voluntary running exercise after focal cerebral ischemia promotes functional recovery and ameliorates ischemia-induced dendritic spine loss in the peri-infarct motor cortex layer 5. Moreover, neuronal morphology is affected by changes in the perineuronal environment. Glial cells, whose phenotypes may be altered by exercise, are known to play a pivotal role in the formation of this perineuronal environment. Herein, we investigated the effects of voluntary running exercise on glial cells after middle cerebral artery occlusion. Voluntary running exercise increased the population of glial fibrillary acidic protein-positive astrocytes born between post-operative days (POD) 0 and 3 on POD15 in the peri-infarct cortex. After exercise, transcriptomic analysis of post-ischemic astrocytes revealed 10 upregulated and 70 downregulated genes. Furthermore, gene ontology analysis showed that the 70 downregulated genes were significantly associated with neuronal morphology. In addition, exercise reduced the number of astrocytes expressing lipocalin 2, a regulator of dendritic spine density, on POD15. Our results suggest that exercise modifies the composition of astrocytic population and their phenotype.

6.
J Comp Neurol ; 530(11): 2033-2055, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35368102

RESUMO

The structural plasticity of dendritic spines serves as the adaptive capabilities of the central nervous system to various stimuli. Among these stimuli, cerebral ischemia induces dynamic alterations in neuronal network activity. Arcadlin/Paraxial protocadherin/Protocadherin-8 (Acad), a regulator of dendritic spine density, is strongly induced by activating stimuli to the neurons. However, the detailed distribution of Acad in normal and ischemic adult brains remains unclear. We comprehensively described Acad expression patterns in normal and ischemic adult brains by in situ hybridization histochemistry. We found that intact adult brains expressed Acad in the piriform cortex, dentate gyrus, hippocampal CA3, entorhinal cortex, amygdala, and hypothalamus. Acad expression was dramatically upregulated in the piriform cortex, olfactory area, dentate gyrus, entorhinal cortex, prefrontal cortex, insular cortex, amygdala, and septohippocampal nucleus 4 h after cerebral ischemia. Cerebral ischemia induced widespread neuronal activation, which was required for Acad upregulation. Our data suggested the involvement of Acad in the adaptive plasticity and remodeling of the neuronal network in the limbic and paralimbic systems.


Assuntos
Isquemia Encefálica , Protocaderinas , RNA Mensageiro , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Camundongos , Protocaderinas/genética , Protocaderinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884811

RESUMO

An accumulation of evidence shows that endogenous neural stem/progenitor cells (NSPCs) are activated following brain injury such as that suffered during ischemic stroke. To understand the expression patterns of these cells, researchers have developed mice that express an NSPC marker, Nestin, which is detectable by specific reporters such as green fluorescent protein (GFP), i.e., Nestin-GFP mice. However, the genetic background of most transgenic mice, including Nestin-GFP mice, comes from the C57BL/6 strain. Because mice from this background strain have many cerebral arterial branches and collateral vessels, they are accompanied by several major problems including variable ischemic areas and high mortality when subjected to ischemic stroke by occluding the middle cerebral artery (MCA). In contrast, CB-17 wild-type mice are free from these problems. Therefore, with the aim of overcoming the aforementioned defects, we first crossed Nestin-GFP mice (C57BL/6 background) with CB-17 wild-type mice and then developed Nestin-GFP mice (CB-17 background) by further backcrossing the generated hybrid mice with CB-17 wild-type mice. Subsequently, we investigated the phenotypes of the established Nestin-GFP mice (CB-17 background) following MCA occlusion; these mice had fewer blood vessels around the MCA compared with the number of blood vessels in Nestin-GFP mice (C57BL/6 background). In addition, TTC staining showed that infarcted volume was variable in Nestin-GFP mice (C57BL/6 background) but highly reproducible in Nestin-GFP mice (CB-17 background). In a further investigation of mice survival rates up to 28 days after MCA occlusion, all Nestin-GFP mice (CB-17 background) survived the period, whereas Nestin-GFP mice (C57BL/6 background) frequently died within 1 week and exhibited a higher mortality rate. Immunohistochemistry analysis of Nestin-GFP mice (CB-17 background) showed that GFP+ cells were mainly obverted in not only conventional neurogenic areas, including the subventricular zone (SVZ), but also ischemic areas. In vitro, cells isolated from the ischemic areas and the SVZ formed GFP+ neurosphere-like cell clusters that gave rise to various neural lineages including neurons, astrocytes, and oligodendrocytes. However, microarray analysis of these cells and genetic mapping experiments by Nestin-CreERT2 Line4 mice crossed with yellow fluorescent protein (YFP) reporter mice (Nestin promoter-driven YFP-expressing mice) indicated that cells with NSPC activities in the ischemic areas and the SVZ had different characteristics and origins. These results show that the expression patterns and fate of GFP+ cells with NSPC activities can be precisely investigated over a long period in Nestin-GFP mice (CB-17 background), which is not necessarily possible with Nestin-GFP mice (C57BL/6 background). Thus, Nestin-GFP mice (CB-17 background) could become a useful tool with which to investigate the mechanism of neurogenesis via the aforementioned cells under pathological conditions such as following ischemic stroke.


Assuntos
Isquemia Encefálica/patologia , Proteínas de Fluorescência Verde/metabolismo , Infarto da Artéria Cerebral Média/patologia , Ventrículos Laterais/irrigação sanguínea , Nestina/metabolismo , Neurogênese/fisiologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , AVC Isquêmico/patologia , Ventrículos Laterais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nestina/genética , Células-Tronco Neurais/metabolismo , Taxa de Sobrevida
8.
Brain Res ; 1767: 147542, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077764

RESUMO

Cerebral infarction causes motor, sensory, and cognitive impairments. Although rehabilitation enhances recovery of activities of daily living after cerebral infarction, its mechanism remains elusive due to the lack of reproducibility and low survival rate of brain ischemic model animals. Here, to investigate the relationship between rehabilitative intervention, motor function, and pathophysiological remodeling of the tissue in the ipsilateral hemisphere after cerebral infarction, we took advantage of a highly reproducible model of cerebral infarction using C.B-17/Icr-+/+Jcl mice. In this model, we confirmed that voluntary running exercise improved functional recovery after ischemia. Exercise did not alter the volume of infarction or survived cortex, or the number of NeuN-labeled cells in the peri-infarct cortex. In mice who did not exercise, the number of basal dendritic spines of layer 5 pyramidal cells decreased in the peri-infarct motor cortex, whereas in mice who exercised it remained at the normal level. The voluntary exercise intervention maintained basal dendritic spine density within the peri-infarct area, which may reflect an adaptive remodeling of the surviving neural circuitry that might contribute to promoting the recovery of activities of daily living.


Assuntos
Isquemia Encefálica/terapia , Espinhas Dendríticas/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Infarto Cerebral/fisiopatologia , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos CBA , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/métodos , Células Piramidais , Reprodutibilidade dos Testes , Corrida
9.
J Nat Med ; 75(4): 833-839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33963491

RESUMO

Indigo Naturalis, also known as Qing Dai (QD) is a compound obtained from Indigofera tinctoria, Isatis tinctoria, and Polygonum tinctoria and is known to ameliorate refractory ulcerative colitis (UC) by an unknown mechanism. QD maintains both homeostasis and the integrity of colon epithelia in mice that have experimentally induced colitis. The primary component of QD, indigo, comprises 42.4% of the compound. Indigo efficiently suppresses rectal bleeding and reduces the erosion of the colon epithelium, whereas it does not reduce weight loss or increase survival in a certain condition. Indigo is a ligand of the aryl hydrocarbon receptor (AhR), which is involved in the anti-colitis activity of QD. Here we investigate the effects of indigo on wound (erosion) closure in colon epithelial cells. Oral administration of indigo induced expression of Cytochrome P450 1A1 (Cyp1a1) in the colon but not in the liver, suggesting that indigo stimulates AhR from the luminal side of the colon. The erosion-closure activity tested in the scratch assays using Caco-2 cells was accelerated by addition of QD and indigo to the culture medium. QD and indigo also induced nuclear localization of AhR and expression of CYP1A1 in the Caco-2 cells. Acceleration of scratch wound closure was abolished by addition of the AhR-antagonist CH223191. Cell proliferation and actin polymerization were also shown to contribute to erosion closure. The results suggest that indigo exerts its erosion-healing effects by increasing proliferation and migration of colon epithelial cells via activation of AhR in intestinal epithelia.


Assuntos
Indigofera , Receptores de Hidrocarboneto Arílico , Animais , Células CACO-2 , Citocromo P-450 CYP1A1/genética , Humanos , Índigo Carmim , Camundongos , Cicatrização
10.
Neuroscience ; 442: 296-310, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32629153

RESUMO

The neural network undergoes remodeling in response to neural activity and interventions, such as antidepressants. Cell adhesion molecules that link pre- and post-synaptic membranes are responsible not only for the establishment of the neural circuitry, but also for the modulation of the strength of each synaptic connection. Among the various classes of synaptic cell adhesion molecules, a non-clustered protocadherin, Arcadlin/Paraxial protocadherin/Protocadherin-8 (Acad), is unique in that it is induced quickly in response to neural activity. Although the primary structure of Arcadlin implies its cell adhesion activity, it weakens the adhesion of N-cadherin. Furthermore, Arcadlin reduces the dendritic spine density in cultured hippocampal neurons. In order to gain an insight into the function of Arcadlin in the brain, we examined the dendritic morphologies of the hippocampal neurons in Acad-/- mice. Acad-/- mice showed a higher spine density than wild-type mice. Following an electroconvulsive seizure (ECS), which strongly induces Arcadlin in the hippocampus, the spine density gradually decreased for 8 h. ECS did not reduce the spine density of CA1 apical dendrites in Acad-/- mice. Daily intraperitoneal injection of the antidepressant fluoxetine (25 mg/kg/day) for 18 days resulted in the induction of Arcadlin in the hippocampus. This treatment reduced spine density in the dentate gyrus and CA1. Chronic fluoxetine treatment did not suppress spine density in Acad-/- mice, suggesting that fluoxetine-induced decrease in spine density is largely due to Arcadlin. The present findings confirm the spine-repulsing activity of Arcadlin and its involvement in the remodeling of hippocampal neurons in response to antidepressants.


Assuntos
Espinhas Dendríticas , Hipocampo , Animais , Dendritos , Fluoxetina , Camundongos , Neurônios
11.
Cells ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492968

RESUMO

Ischemic stroke is a critical disease caused by cerebral artery occlusion in the central nervous system (CNS). Recent therapeutic advances, such as neuroendovascular intervention and thrombolytic therapy, have allowed recanalization of occluded brain arteries in an increasing number of stroke patients. Although previous studies have focused on rescuing neural cells that still survive despite decreased blood flow, expanding the therapeutic time window may allow more patients to undergo reperfusion in the near future, even after lethal ischemia, which is characterized by death of mature neural cells, such as neurons and glia. However, it remains unclear whether early reperfusion following lethal ischemia results in positive outcomes. The present study used two ischemic mouse models-90-min transient middle cerebral artery occlusion (t-MCAO) paired with reperfusion to induce lethal ischemia and permanent middle cerebral artery occlusion (p-MCAO)-to investigate the effect of early reperfusion up to 8 w following MCAO. Although early reperfusion following 90-min t-MCAO did not rescue mature neural cells, it preserved the vascular cells within the ischemic areas at 1 d following 90-min t-MCAO compared to that following p-MCAO. In addition, early reperfusion facilitated the healing processes, including not only vascular but also neural repair, during acute and chronic periods and improved recovery. Furthermore, compared with p-MCAO, early reperfusion after t-MCAO prevented behavioral symptoms of neurological deficits without increasing negative complications, including hemorrhagic transformation and mortality. These results indicate that early reperfusion provides beneficial effects presumably via cytoprotective and regenerative mechanisms in the CNS, suggesting that it may be useful for stroke patients that experienced lethal ischemia.


Assuntos
Isquemia Encefálica/complicações , AVC Isquêmico/etiologia , AVC Isquêmico/patologia , Neurônios/patologia , Reperfusão , Albuminas/metabolismo , Animais , Isquemia Encefálica/fisiopatologia , Morte Celular , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , AVC Isquêmico/fisiopatologia , Macrófagos/patologia , Masculino , Camundongos , Microglia/patologia , Neovascularização Fisiológica , Células-Tronco Neurais/metabolismo , Esferoides Celulares/patologia , Fatores de Tempo
12.
J Pharmacol Sci ; 142(4): 148-156, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32033881

RESUMO

Qing Dai/Indigo Naturalis (QD) has been shown to ameliorate ulcerative colitis (UC) in clinical trials; however, its mechanism remains elusive. This study investigates the effects of QD on murine dextran sulfate sodium salt-induced colitis. Oral administration of QD protected the animals from colitis as manifested by weight loss, diarrhea, and rectal bleeding. QD was distinguishingly more effective than 5-aminosalicylate. Focused microarray analysis of genes expressed in the distal colon suggested that QD influences the inflammatory pathway. Anti-inflammatory activity of QD was confirmed by the suppression of nitric oxide (NO) production in response to interleukin-1ß in cultured hepatocytes. Some of the constituents in QD, such as tryptanthrin (TRYP) and indigo, suppressed NO production. TRYP maintained body weight but did not inhibit bleeding. Indigo, on the other hand, partially ameliorated bleeding, but did not maintain body weight. The combination of TRYP and indigo did not show additive ameliorating activity. The methanol extract of QD showed an anti-colitis activity like that of TRYP. In contrast, the methanol-insoluble QD fraction moderately ameliorated diarrhea and bleeding. Combining these two fractions resulted in full anti-colitis activity. Further clarification of the active constituents will help in the discovery of a safe and potent prescription for UC.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Camundongos Endogâmicos C57BL
13.
Neurosci Lett ; 721: 134783, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31981722

RESUMO

The monoamine hypothesis does not fully explain the delayed onset of recovery after antidepressant treatment or the mechanisms of recovery after electroconvulsive therapy (ECT). The common mechanism that operates both in ECT and monoaminergic treatment presumably involves molecules induced in both of these conditions. A spine density modulator, Arcadlin (Acad), the rat orthologue of human Protocadherin-8 (PCDH8) and of Xenopus and zebrafish Paraxial protocadherin (PAPC), is induced by both electroconvulsive seizure (ECS) and antidepressants; however, its cellular mechanism remains elusive. Here we confirm induction of Arcadlin upon stimulation of an N-methyl-d-aspartate (NMDA) receptor in cultured hippocampal neurons. Stimulation of an NMDA receptor also induced acute (20 min) and delayed (2 h) phosphorylation of the p38 mitogen-activated protein (MAP) kinase; the delayed phosphorylation was not obvious in Acad-/- neurons, suggesting that it depends on Arcadlin induction. Exposure of highly mature cultured hippocampal neurons to 1-10 µM serotonin for 4 h resulted in Arcadlin induction and p38 MAP kinase phosphorylation. Co-application of the NMDA receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (APV) completely blocked Arcadlin induction and p38 MAP kinase phosphorylation. Finally, administration of antidepressant fluoxetine in mice for 16 days induced Arcadlin expression in the hippocampus. Our data indicate that the Arcadlin-p38 MAP kinase pathway is a candidate neural network modulator that is activated in hippocampal neurons under the dual regulation of serotonin and glutamate and, hence, may play a role in antidepressant therapies.


Assuntos
Caderinas/biossíntese , Hipocampo/metabolismo , Neurônios/metabolismo , Serotonina/metabolismo , Animais , Células Cultivadas , Fluoxetina/farmacocinética , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Protocaderinas , Ratos , Ratos Sprague-Dawley , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Development ; 147(2)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31852686

RESUMO

Lymphangiogenesis plays important roles in normal fetal development and postnatal growth. However, its molecular regulation remains unclear. Here, we have examined the function of forkhead box protein O1 (FOXO1) transcription factor, a known angiogenic factor, in developmental dermal lymphangiogenesis using endothelial cell-specific FOXO1-deficient mice. FOXO1-deficient mice showed disconnected and dilated lymphatic vessels accompanied with increased proliferation and decreased apoptosis in the lymphatic capillaries. Comprehensive DNA microarray analysis of the causes of in vivo phenotypes in FOXO1-deficient mice revealed that the gene encoding C-X-C chemokine receptor 4 (CXCR4) was the most drastically downregulated in FOXO1-deficient primary lymphatic endothelial cells (LECs). CXCR4 was expressed in developing dermal lymphatic capillaries in wild-type mice but not in FOXO1-deficient dermal lymphatic capillaries. Furthermore, FOXO1 suppression impaired migration toward the exogenous CXCR4 ligand, C-X-C chemokine ligand 12 (CXCL12), and coordinated proliferation in LECs. These results suggest that FOXO1 serves an essential role in normal developmental lymphangiogenesis by promoting LEC migration toward CXCL12 and by regulating their proliferative activity. This study provides valuable insights into the molecular mechanisms underlying developmental lymphangiogenesis.


Assuntos
Derme/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Linfangiogênese/genética , Receptores CXCR4/genética , Cauda/metabolismo , Regulação para Cima/genética , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Apoptose , Sequência de Bases , Caderinas/metabolismo , Morte Celular , Proliferação de Células , Quimiocina CXCL12/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Elementos Facilitadores Genéticos/genética , Deleção de Genes , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores CXCR4/metabolismo
15.
Biochem Biophys Res Commun ; 521(4): 827-832, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31708102

RESUMO

Interactions between Sema4D and its receptors, PlexinB1 and CD72, induce various functions, including axon guidance, angiogenesis, and immune activation. Our previous study revealed that Sema4D is involved in the upregulation of nitric oxide production in microglia after cerebral ischemia. In this study, we investigated the underlying mechanisms of the enhancement of microglial nitric oxide production by Sema4D. Primary microglia expressed PlexinB1 and CD72, and cortical microglia expressed CD72. Sema4D promoted nitric oxide production and slightly inhibited Erk1/2 phosphorylation in microglia. Partial Erk1/2 inhibition enhanced microglial nitric oxide production. Inhibition of Erk1/2 phosphorylation induced the expression of Ifn-ß mRNA, and IFN-ß promoted nitric oxide production in microglia. In the ischemic cortex, the expression of Ifn-ß mRNA was downregulated by Sema4D deficiency. These findings indicated that the enhancement of nitric oxide production by Sema4D is involved in partial Erk1/2 inhibition and upregulation of IFN-ß.


Assuntos
Interferon beta/metabolismo , Microglia/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Semaforinas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Isquemia Encefálica/metabolismo , Células Cultivadas , Flavonoides/farmacologia , Interferon beta/genética , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Receptores de Superfície Celular/metabolismo , Semaforinas/genética , Regulação para Cima
16.
Neuroscience ; 406: 420-431, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30922994

RESUMO

Cerebral ischemia induces neuroinflammation and microglial activation, in which activated microglia upregulate their proliferative activity and change their metabolic states. In activated microglia, l-arginine is metabolized competitively by inducible nitric oxide synthase (iNOS) and arginase (Arg), which then synthesize NO or polyamines, respectively. Our previous study demonstrated that Sema4D deficiency inhibits iNOS expression and promotes proliferation of ionized calcium-binding adaptor molecule 1 (Iba1)-positive (Iba1+) microglia in the ischemic cortex, although the underlying mechanisms were unclear. Using middle cerebral artery occlusion, we tested the hypothesis that Sema4D deficiency alters the balance of l-arginine metabolism between iNOS and Arg, leading to an increase in the production of polyamines, which are an essential factor for cell proliferation. In the peri-ischemic cortex, almost all iNOS+ and/or Arg1+ cells were Iba1+ microglia. In the peri-ischemic cortex of Sema4D-deficient (Sema4D-/-) mice, the number of iNOS+ Arg1- Iba1+ microglia was smaller and that of iNOS- Arg1+ Iba1+ microglia was greater than those of wild-type (WT) mice. In addition, urea and polyamine levels in the ischemic cortex of Sema4D-/- mice were higher than those of WT mice; furthermore, the presence of Sema4D inhibited polyamine production in primary microglia obtained from Sema4D-/- mice. Finally, microglia cultured under polyamine putrescine-supplemented conditions demonstrated increased proliferation rates over non-supplemented controls. These findings indicate that Sema4D regulates microglial proliferation at least in part by regulating the competitive balance of l-arginine metabolism.


Assuntos
Arginina/metabolismo , Isquemia Encefálica/metabolismo , Proliferação de Células/fisiologia , Córtex Cerebral/metabolismo , Microglia/metabolismo , Semaforinas/deficiência , Animais , Isquemia Encefálica/patologia , Células Cultivadas , Córtex Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia
17.
Biochem Biophys Res Commun ; 489(4): 413-419, 2017 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-28559138

RESUMO

Sprouting migration of lymphatic endothelial cell (LEC) is a pivotal step in lymphangiogenic process. However, its molecular mechanism remains unclear including effective migratory attractants. Meanwhile, forkhead transcription factor FOXO1 highly expresses in LEC nuclei, but its significance in LEC migratory activity has not been researched. In this study, we investigated function of FOXO1 transcription factor associated with LEC migration toward exogenous ATP which has recently gathered attentions as a cell migratory attractant. The transwell membrane assay indicated that LECs migrated toward exogenous ATP, which was impaired by FOXO1 knockdown. RT-PCR analysis showed that P2Y1, a purinergic receptor, expression was markedly reduced by FOXO1 knockdown in LECs. Moreover, P2Y1 blockage impaired LEC migration toward exogenous ATP. Western blot analysis revealed that Akt phosphorylation contributed to FOXO1-dependent LEC migration toward exogenous ATP and its blockage affected LEC migratory activity. Furthermore, luciferase reporter assay and ChIP assay suggested that FOXO1 directly bound to a conserved binding site in P2RY1 promoter and regulated its activity. These results indicated that FOXO1 serves a pivotal role in LEC migration toward exogenous ATP via direct transcriptional regulation of P2Y1 receptor.


Assuntos
Trifosfato de Adenosina/metabolismo , Movimento Celular , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Receptores Purinérgicos P2Y1/genética , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Receptores Purinérgicos P2Y1/metabolismo
18.
Neuroscience ; 346: 43-51, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28077279

RESUMO

The state of microglial activation provides important information about the central nervous system. However, a reliable index of microglial activation in histological samples has yet to be established. Here, we show that microglial activation induces topological changes of Iba1 localization that can be detected by analysis based on homology theory. Analysis of homology was applied to images of Iba1-stained tissue sections, and the 0-dimentional Betti number (b0: the number of solid components) and the 1-dimentional Betti number (b1: the number of windows surrounded by solid components) were obtained. We defined b1/b0 as the Homology Value (HV), and investigated its validity as an index of microglial activation using cerebral ischemia model mice. Microglial activation was accompanied by changes to Iba1 localization and morphology of microglial processes. In single microglial cells, the change of Iba1 localization increased b1. Conversely, thickening or retraction of microglial processes decreased b0. Consequently, microglial activation increased the HV. The HV of a tissue area increased with proximity to the ischemic core and showed a high degree of concordance with the number of microglia expressing activation makers. Furthermore, the HV of human metastatic brain tumor tissue also increased with proximity to the tumor. These results suggest that our index, based on homology theory, can be used to correctly evaluate microglial activation in various tissue images.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imuno-Histoquímica/métodos , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Animais , Isquemia Encefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Feminino , Humanos , Masculino , Camundongos
19.
Neurosci Res ; 108: 6-11, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26752319

RESUMO

Sema4D, originally identified as a negative regulator of axon guidance during development, is involved in various physiological and pathological responses. In this study, we evaluated the effect of Sema4D-deficiency on oligodendrocyte restoration after the cerebral ischemia/reperfusion using direct ligation of the middle cerebral artery followed by reperfusion. In both Sema4D(+/+) wild-type and Sema4D(-/-) null mutant mice, the peri-infarct area showed a decrease in the number of oligodendrocytes at 3 days post-reperfusion. Subsequently, the number of oligodendrocytes was observed to gradually recover in both groups. Sema4D-deficient mice, however, showed an enhanced recovery of oligodendrocytes and an upregulation of oligodendrocyte progenitor cells at days 14 and 28 of reperfusion. Cell proliferation identified by incorporation of bromodeoxyuridine was enhanced in Sema4D(-/-) mice from days 3 to 14 post-reperfusion compared to the Sema4D(+/+) mice. Furthermore, apoptotic cell death of oligodendrocytes was reduced at days 7 post-reperfusion in Sema4D(-/-) mice compared to Sema4D(+/+) mice. These findings indicate that enhanced proliferation of progenitor cells and survival of oligodendrocytes resulted in improved oligodendrocyte recovery in Sema4D(-/-) mice. This may provide a new approach for neurorestorative treatment in patients with stroke, which aims to manipulate endogenous oligodendrogenesis and thereby to promote brain repair after stroke.


Assuntos
Isquemia Encefálica/patologia , Córtex Cerebral/patologia , Oligodendroglia/patologia , Traumatismo por Reperfusão/patologia , Semaforinas/metabolismo , Animais , Isquemia Encefálica/metabolismo , Proliferação de Células , Sobrevivência Celular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/metabolismo , Semaforinas/genética
20.
Glia ; 63(12): 2249-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26202989

RESUMO

Cerebral ischemia evokes neuroinflammatory response. Inflammatory stimulation induces microglial activation, such as changes of their morphology from ramified to ameboid, expression of iNOS and cytokines, and the elevation of proliferative activity. Activated microglia play important roles in pathogenesis of cerebral ischemia. A previous study indicated that Sema4D promoted iNOS expression in cultured microglia; however, roles of Sema4D on microglial activation in ischemic injury remains unclear. We investigated the effect of Sema4D-deficiency on microglial activation by using permanent middle cerebral artery occlusion (MCAO) in mice. In this study, ischemia-induced activated microglia were classified into activated-ramified microglia and ameboid microglia based on their morphology. We demonstrated that the rate of iNOS expression in activated-ramified microglia was lower than that in ameboid microglia, while the most proliferating microglia were activated-ramified microglia but not ameboid microglia after cerebral ischemia. Sema4D-deficiency decreased the number of ameboid microglia and iNOS-expressing activated-ramified microglia in the peri-ischemic cortex. These changes by Sema4D-deficiency contributed to the reduction of NO production that was estimated by nitrite concentration in ischemic cortex. On the other hand, Sema4D-deficiency promoted proliferation of microglia in the peri-ischemic cortex. Importantly, ischemia-induced apoptosis and postischemic behavioral abnormality were moderated in Sema4D(-/-) mice. These findings suggest that Sema4D promotes cytotoxic activation of microglia and inhibits functional recovery after cerebral ischemia.


Assuntos
Córtex Cerebral/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Microglia/metabolismo , Semaforinas/metabolismo , Animais , Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células/fisiologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Atividade Motora/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Recuperação de Função Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA