Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37671962

RESUMO

Computing accurate yet efficient approximations to the solutions of the electronic Schrödinger equation has been a paramount challenge of computational chemistry for decades. Quantum Monte Carlo methods are a promising avenue of development as their core algorithm exhibits a number of favorable properties: it is highly parallel and scales favorably with the considered system size, with an accuracy that is limited only by the choice of the wave function Ansatz. The recently introduced machine-learned parametrizations of quantum Monte Carlo Ansätze rely on the efficiency of neural networks as universal function approximators to achieve state of the art accuracy on a variety of molecular systems. With interest in the field growing rapidly, there is a clear need for easy to use, modular, and extendable software libraries facilitating the development and adoption of this new class of methods. In this contribution, the DeepQMC program package is introduced, in an attempt to provide a common framework for future investigations by unifying many of the currently available deep-learning quantum Monte Carlo architectures. Furthermore, the manuscript provides a brief introduction to the methodology of variational quantum Monte Carlo in real space, highlights some technical challenges of optimizing neural network wave functions, and presents example black-box applications of the program package. We thereby intend to make this novel field accessible to a broader class of practitioners from both the quantum chemistry and the machine learning communities.

2.
Nat Commun ; 14(1): 274, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650151

RESUMO

Obtaining accurate ground and low-lying excited states of electronic systems is crucial in a multitude of important applications. One ab initio method for solving the Schrödinger equation that scales favorably for large systems is variational quantum Monte Carlo (QMC). The recently introduced deep QMC approach uses ansatzes represented by deep neural networks and generates nearly exact ground-state solutions for molecules containing up to a few dozen electrons, with the potential to scale to much larger systems where other highly accurate methods are not feasible. In this paper, we extend one such ansatz (PauliNet) to compute electronic excited states. We demonstrate our method on various small atoms and molecules and consistently achieve high accuracy for low-lying states. To highlight the method's potential, we compute the first excited state of the much larger benzene molecule, as well as the conical intersection of ethylene, with PauliNet matching results of more expensive high-level methods.

3.
J Chem Phys ; 154(12): 124108, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810658

RESUMO

Variational quantum Monte Carlo (QMC) is an ab initio method for solving the electronic Schrödinger equation that is exact in principle, but limited by the flexibility of the available Ansätze in practice. The recently introduced deep QMC approach, specifically two deep-neural-network Ansätze PauliNet and FermiNet, allows variational QMC to reach the accuracy of diffusion QMC, but little is understood about the convergence behavior of such Ansätze. Here, we analyze how deep variational QMC approaches the fixed-node limit with increasing network size. First, we demonstrate that a deep neural network can overcome the limitations of a small basis set and reach the mean-field (MF) complete-basis-set limit. Moving to electron correlation, we then perform an extensive hyperparameter scan of a deep Jastrow factor for LiH and H4 and find that variational energies at the fixed-node limit can be obtained with a sufficiently large network. Finally, we benchmark MF and many-body Ansätze on H2O, increasing the fraction of recovered fixed-node correlation energy of single-determinant Slater-Jastrow-type Ansätze by half an order of magnitude compared to previous variational QMC results, and demonstrate that a single-determinant Slater-Jastrow-backflow version of the Ansatz overcomes the fixed-node limitations. This analysis helps understand the superb accuracy of deep variational Ansätze in comparison to the traditional trial wavefunctions at the respective level of theory and will guide future improvements of the neural-network architectures in deep QMC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...