Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Sci Rep ; 13(1): 19408, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938581

RESUMO

The major limitation of the widespread use of IVP derived embryos is their consistent deficiencies in vitality when compared with their ex vivo derived counterparts. Although embryo metabolism is considered a useful metric of embryo quality, research connecting mitochondrial function with the developmental capacity of embryos is still lacking. Therefore, the aim of the present study was to analyse bovine embryo respiration signatures in relation to developmental capacity. This was achieved by taking advantage of two generally accepted metrics for developmental capacity: (I) environmental conditions during development (vivo vs. vitro) and (II) developmental kinetics (day 7 vs. day 8 blastocysts). Our study showed that the developmental environment affected total embryo oxygen consumption while different morphokinetics illustrating the embryo qualities correlate with maximal mitochondrial respiration, mitochondrial spare capacity, ATP-linked respiration as well as efficiency of ATP generation. This respiration fingerprint for high embryo quality is reflected by relatively lower lipid contents and relatively higher ROS contents. In summary, the results of the present study extend the existing knowledge on the relationship between bovine embryo quality and the signature of mitochondrial respiration by considering contrasting developmental environments as well as different embryo morphokinetics.


Assuntos
Blastocisto , Embrião de Mamíferos , Bovinos , Animais , Respiração , Mitocôndrias , Trifosfato de Adenosina
2.
BMC Genomics ; 24(1): 492, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641029

RESUMO

BACKGROUND: Immune traits are considered to serve as potential biomarkers for pig's health. Medium to high heritabilities have been observed for some of the immune traits suggesting genetic variability of these phenotypes. Consideration of previously established genetic correlations between immune traits can be used to identify pleiotropic genetic markers. Therefore, genome-wide association study (GWAS) approaches are required to explore the joint genetic foundation for health biomarkers. Usually, GWAS explores phenotypes in a univariate (uv), trait-by-trait manner. Besides two uv GWAS methods, four multivariate (mv) GWAS approaches were applied on combinations out of 22 immune traits for Landrace (LR) and Large White (LW) pig lines. RESULTS: In total 433 (LR: 351, LW: 82) associations were identified with the uv approach implemented in PLINK and a Bayesian linear regression uv approach (BIMBAM) software. Single Nucleotide Polymorphisms (SNPs) that were identified with both uv approaches (n = 32) were mostly associated with immune traits such as haptoglobin, red blood cell characteristics and cytokines, and were located in protein-coding genes. Mv GWAS approaches detected 647 associations for different mv immune trait combinations which were summarized to 133 Quantitative Trait Loci (QTL). SNPs for different trait combinations (n = 66) were detected with more than one mv method. Most of these SNPs are associated with red blood cell related immune trait combinations. Functional annotation of these QTL revealed 453 immune-relevant protein-coding genes. With uv methods shared markers were not observed between the breeds, whereas mv approaches were able to detect two conjoint SNPs for LR and LW. Due to unmapped positions for these markers, their functional annotation was not clarified. CONCLUSIONS: This study evaluated the joint genetic background of immune traits in LR and LW piglets through the application of various uv and mv GWAS approaches. In comparison to uv methods, mv methodologies identified more significant associations, which might reflect the pleiotropic background of the immune system more accurately. In genetic research of complex traits, the SNP effects are generally small. Furthermore, one genetic variant can affect several correlated immune traits at the same time, termed pleiotropy. As mv GWAS methods consider strong dependencies among traits, the power to detect SNPs can be boosted. Both methods revealed immune-relevant potential candidate genes. Our results indicate that one single test is not able to detect all the different types of genetic effects in the most powerful manner and therefore, the methods should be applied complementary.


Assuntos
Citocinas , Estudo de Associação Genômica Ampla , Suínos/genética , Animais , Teorema de Bayes , Fenótipo , Eritrócitos
4.
J Anim Breed Genet ; 139(6): 695-709, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35904167

RESUMO

Improving the immunocompetence towards pathogens represents a desirable objective of breeding strategies to increase resilience. However, the immune system is complex and the genetic foundation of the underlying components is not yet clarified. In the present study, we focused on 22 blood parameters of 1,144 Landrace (LR) and Large White (LW) piglets at the age of 6-7 weeks. The immune profiles covered immune cells, red blood cell characteristics and cytokines. Genetic parameters based on pedigree information along with possible environmental effects were estimated. Litter effects play an important role in the expression of immune parameters of their young progenies. Hence, litter impacts on the piglet's immune profile including the immune parameters of the dam itself were investigated by different models. To incorporate the complexity of the immune network, the data were further investigated with a principal component analysis. Immune traits showed low to high breed-specific heritabilities (h2 ). Strong positive rg were estimated among red blood cell characteristics (0.77-0.99) and among cytokines (0.48-0.99). Neutrophils and lymphocytes illustrated a high negative rg (-0.96 to -0.98). The litter impact on piglet's immunity was examined and strengthened already observed breed differences. In LR, h2 (0.22-0.15) and litter effect (c2 ) (0.52-0.44) for IFN-γ decreased after statistical consideration of maternal impact. In LW, a decrease in h2 (0.32-0.18) for IFN-γ and an increase in c2 (0.54-0.56) were observed. Here, sufficient correlations were detected within various immune traits and functional biological networks of principal components. Most immune traits are heritable and are promising to cover global breed-specific immunocompetence in pigs. The analysis of immune traits has to be extended in order to find an optimal range and to characterize relationships between immunity and performance to gain an improved immune system without accidental losses in productivity.


Assuntos
Citocinas , Animais , Citocinas/genética , Feminino , Tamanho da Ninhada de Vivíparos/genética , Fenótipo , Gravidez , Suínos/genética
5.
Sci Rep ; 12(1): 10793, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750764

RESUMO

At the embryonic level, CRISPR technologies have been used to edit genomes reliably and efficiently in various mammalian models, with Ribonucleoprotein (RNP) electroporation potentially representing a superior delivery method into mammalian zygotes. However, detailed insights of the interactions between varying technical settings as well as the time point of electroporation in a bovine zygote's cell cycle on developmental metrics and the frequency and type of editing events are largely unknown. The present study uncovers that increasing pulse lengths result in higher Full Edit rates, with Mosaicism in Full-Edit embryos being significantly affected by adjusting RNP-electroporation relative to zygote cell cycle. A considerable proportion of Full Edit embryos demonstrated loss-of-heterozygosity after RNP-electroporation prior to S-phase. Some of these loss-of-heterozygosity events are a consequence of chromosomal disruptions along large sections of the target chromosomes making it necessary to check for their presence prior use of this technique in animal breeding. One out of 2 of these loss-of-heterozygosity events, however, was not associated with loss of an entire chromosome or chromosomal sections. Whether analysed loss-of-heterozygosity in these cases, however, was a false negative result due to loss of PCR primer sequences after INDEL formation at the target side or indeed due to interhomolog recombination needs to be clarified in follow up studies since the latter would for sure offer attractive options for future breeding schedules.


Assuntos
Proteína 9 Associada à CRISPR , Zigoto , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Bovinos , Divisão Celular , Eletroporação/métodos , Edição de Genes/métodos , Mamíferos/metabolismo , Ribonucleoproteínas/metabolismo , Zigoto/metabolismo
6.
Reprod Domest Anim ; 57(10): 1208-1217, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35765751

RESUMO

Follicular fluid (FF) plays an important role during follicular development and it contains several bioactive molecules including extracellular microRNAs (ECmiRNAs) that may mediate cell-cell communication during follicular development. Yet, the distribution patterns of ECmiRNAs in FF is not well characterized. This study aims to investigate the distribution of ECmiRNAs in two major fractions, namely exosomal and non-exosomal, of bovine follicular fluid (bFF). Exosomal and non-exosomal fractions from bFF were separated using Exoquick™ exosomes precipitation kit. miRNA expression was evaluated using the human miRCURY LNA™ Universal RT miRNA PCR array system. Transmission electron microscopy and immunoblotting revealed that the isolated vesicles were exosomes. The real-time PCR-based expression analysis revealed that 516 miRNAs were detected in the exosomal fraction of bFF, while 393 miRNAs were detected in the non-exosomal fraction. Among the detected miRNAs, a total of 370 miRNAs were detected in both fractions, while 145 miRNAs and 23 miRNAs were solely detected in exosomal and non-exosomal fractions, respectively. Exploratory pathway analysis showed that the genes targeted by exosomal and non-exosomal miRNAs to be involved in MAPK, Wnt, FoxO, TGF-beta, Oxytocin, ErbB, PI3K-Akt, Neurotrophin signalling pathways which are believed to be involved in follicular development, cell proliferation, and meiotic resumption. The results of our study demonstrated that besides the exosomal fraction, non-exosomal fractions can carry a significant amount of miRNAs in bFF where the exosomal fraction carries a significantly higher number of detectable miRNAs.


Assuntos
Líquido Folicular , MicroRNAs , Animais , Bovinos , Feminino , Líquido Folicular/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Crescimento Neural/metabolismo , Ocitocina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta
7.
Animals (Basel) ; 12(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681828

RESUMO

Satellite cells take an indispensable place in skeletal muscle regeneration, maintenance, and growth. However, only limited works have investigated effects of dietary compounds on the proliferation of porcine satellite cells (PSCs) and related mechanisms. Sulforaphane (SFN) at multiple levels was applied to PSCs. The PSCs' viability and HDAC activity were measured with a WST-1 cell proliferation kit and Color-de-Lys® HDAC colorimetric activity assay kit. Gene expression and epigenetics modification were tested with qRT-PCR, Western blot, bisulfite sequencing, and ChIP-qPCR. This study found that SFN enhanced PSC proliferation and altered mRNA expression levels of myogenic regulatory factors. In addition, SFN inhibited histone deacetylase (HDAC) activity, disturbed mRNA levels of HDAC family members, and elevated acetylated histone H3 and H4 abundance in PSCs. Furthermore, both mRNA and protein levels of the Smad family member 7 (SMAD7) in PSCs were upregulated after SFN treatment. Finally, it was found that SFN increased the acetylation level of histone H4 in the SMAD7 promoter, decreased the expression of microRNAs, including ssc-miR-15a, ssc-miR-15b, ssc-miR-92a, ssc-miR-17-5p, ssc-miR-20a-5p, and ssc-miR-106a, targeting SMAD7, but did not impact on the SMAD7 promoter's methylation status in PSCs. In summary, SFN was found to boost PSC proliferation and epigenetically increase porcine SMAD7 expression, which indicates a potential application of SFN in modulation of skeletal muscle growth.

8.
J Anim Physiol Anim Nutr (Berl) ; 106(5): 1017-1035, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34617344

RESUMO

Pig production depends on a health and performance balance. An approach to improve intestinal health is the oregano essential oil (OEO) supplementation within a conventional diet. Intestinal integrity regulating effects, for example gene expression, of some feed ingredients are important key factors for that balance. We hypothesized that OEO affects the expression of genes associated with pigs' intestinal integrity. In four trials, a total of 86 pigs have been used. From weaning, the 'treated' group (n = 42) was additionally fed an oregano flavour additive [1500 mg/kg (7.5% pure OEO)] within the basal diet. The 'control' group (n = 44) was kept under identical environmental conditions, except the OEO. At age of 6 months, pigs were slaughtered with an average weight of 111.1 ± 10.9 kg. In addition to automatically generated 'Fat-o-Meter' (AutoFOM) data, carcass quality factors have been measured manually. Valuable cuts of meat, such as ham and belly, were significantly reduced in the OEO group. Effects of OEO on pigs' haematologic parameters were very limited. For transcriptome analysis, the most interesting microarray expression results have been listed in a table (topTable). Selected genes were technically validated by qPCR. As a result, few significant differences in animal development and meat quality have been found between the OEO treated and the control group. Depending on OEO supplementation, we found 93 differently regulated genes in the jejunal tissue (70 up, 23 down) and 60 in the ileal tissue (48 up, 12 down). Just three genes (GRIN3B [glutamate ionotropic receptor NMDA type subunit 3B], TJP1/ZO-1 [tight junction protein ZO-1] and one uncharacterized gene) were affected by OEO both in jejunum and ileum. qPCR validation revealed AKT serine/threonine kinase 3 (AKT3), Interferon (IFN) -ε, -ω, tight junction protein (TJP1)/ZO-1 (ZO-1) to be upregulated in the jejunum and C-C motif chemokine ligand 21 (CCL21) was upregulated in the ileum of pigs that were supplemented with OEO. OEO supplementation had limited effects on pigs' performance traits. However, we were able to demonstrate that OEO alters the expression of genes associated with adaptive immune response in pigs' small intestine. These findings help to explain OEOs' beneficial impact on pigs' intestinal integrity.


Assuntos
Hematologia , Óleos Voláteis , Origanum , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Perfilação da Expressão Gênica/veterinária , Íleo , Jejuno , Óleos Voláteis/farmacologia , Suínos
9.
BMC Genomics ; 22(1): 717, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610786

RESUMO

BACKGROUND: In recent years, animal welfare and health has become more and more important in pig breeding. So far, numerous parameters have been considered as important biomarkers, especially in the immune reaction and inflammation. Previous studies have shown moderate to high heritabilities in most of these traits. However, the genetic background of health and robustness of pigs needs to be extensively clarified. The objective of this study was to identify genomic regions with a biological relevance for the immunocompetence of piglets. Genome-wide Association Studies (GWAS) in 535 Landrace (LR) and 461 Large White (LW) piglets were performed, investigating 20 immune relevant traits. Besides the health indicators of the complete and differential blood count, eight different cytokines and haptoglobin were recorded in all piglets and their biological dams to capture mediating processes and acute phase reactions. Additionally, all animals were genotyped using the Illumina PorcineSNP60v2 BeadChip. RESULTS: In summary, GWAS detected 25 genome-wide and 452 chromosome-wide significant SNPs associated with 17 immune relevant traits in the two maternal pig lines LR and LW. Only small differences were observed considering the maternal immune records as covariate within the statistical model. Furthermore, the study identified across- and within-breed differences as well as relevant candidate genes. In LR more significant associations and related candidate genes were detected, compared with LW. The results detected in LR and LW are partly in accordance with previously identified quantitative trait loci (QTL) regions. In addition, promising novel genomic regions were identified which might be of interest for further detailed analysis. Especially putative pleiotropic regions on SSC5, SSC12, SSC15, SSC16 and SSC17 are of major interest with regard to the interacting structure of the immune system. The comparison with already identified QTL gives indications on interactions with traits affecting piglet survival and also production traits. CONCLUSION: In conclusion, results suggest a polygenic and breed-specific background of immune relevant traits. The current study provides knowledge about regions with biological relevance for health and immune traits. Identified markers and putative pleiotropic regions provide first indications in the context of balancing a breeding-based modification of the porcine immune system.


Assuntos
Sistema Imunitário , Sus scrofa , Animais , Estudos de Associação Genética/veterinária , Genótipo , Fenótipo , Locos de Características Quantitativas , Sus scrofa/genética , Sus scrofa/imunologia , Suínos
10.
Biology (Basel) ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072812

RESUMO

Inflammation is regulated by epigenetic modifications, including DNA methylation and histone acetylation. Sulforaphane (SFN), a histone deacetylase (HDAC) inhibitor, is also a potent immunomodulatory agent, but its anti-inflammatory functions through epigenetic modifications remain unclear. Therefore, this study aimed to investigate the epigenetic effects of SFN in maintaining the immunomodulatory homeostasis of innate immunity during acute inflammation. For this purpose, SFN-induced epigenetic changes and expression levels of immune-related genes in response to lipopolysaccharide (LPS) stimulation of monocyte-derived dendritic cells (moDCs) were analyzed. These results demonstrated that SFN inhibited HDAC activity and caused histone H3 and H4 acetylation. SFN treatment also induced DNA demethylation in the promoter region of the MHC-SLA1 gene, resulting in the upregulation of Toll-like receptor 4 (TLR4), MHC-SLA1, and inflammatory cytokines' expression at 6 h of LPS stimulation. Moreover, the protein levels of cytokines in the cell culture supernatants were significantly inhibited by SFN pre-treatment followed by LPS stimulation in a time-dependent manner, suggesting that inhibition of HDAC activity and DNA methylation by SFN may restrict the excessive inflammatory cytokine availability in the extracellular environment. We postulate that SFN may exert a protective and anti-inflammatory function by epigenetically influencing signaling pathways in experimental conditions employing porcine moDCs.

11.
BMC Genomics ; 22(1): 408, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082721

RESUMO

BACKGROUND: Morphological evaluation of embryos has been used to screen embryos for transfer. However, the repeatability and accuracy of this method remains low. Thus, evaluation of an embryo's gene expression signature with respect to its developmental capacity could provide new opportunities for embryo selection. Since the gene expression outline of an embryo is considered as an aggregate of its intrinsic characteristics and culture conditions, we have compared transcriptome profiles of in vivo and in vitro derived blastocysts in relation to pregnancy outcome to unravel the discrete effects of developmental competence and environmental conditions on bovine embryo gene expression outlines. To understand whether the gene expression patterns could be associated with blastocyst developmental competency, the global transcriptome profile of in vivo (CVO) and in vitro (CVT) derived competent blastocysts that resulted in pregnancy was investigated relative to that of in vivo (NVO) and in vitro (NVT) derived blastocysts which did not establish initial pregnancy, respectively while to unravel the effects of culture condition on the transcriptome profile of embryos, the transcriptional activity of the CVO group was compared to the CVT group and the NVO group was compared to the NVT ones. RESULTS: A total of 700 differentially expressed genes (DEGs) were identified between CVO and NVO blastocysts. These gene transcripts represent constitutive regions, indel variants, 3'-UTR sequence variants and novel transcript regions. The majority (82%) of these DEGs, including gene clusters like ATP synthases, eukaryotic translation initiation factors, ribosomal proteins, mitochondrial ribosomal proteins, NADH dehydrogenase and cytochrome c oxidase subunits were enriched in the CVO group. These DEGs were involved in pathways associated with glycolysis/glycogenesis, citrate acid cycle, pyruvate metabolism and oxidative phosphorylation. Similarly, a total of 218 genes were differentially expressed between CVT and NVT groups. Of these, 89%, including TPT1, PDIA6, HSP90AA1 and CALM, were downregulated in the CVT group and those DEGs were overrepresented in pathways related to protein processing, endoplasmic reticulum, spliceasome, ubiquitone mediated proteolysis and steroid biosynthesis. On the other hand, although both the CVT and CVO blastocyst groups resulted in pregnancy, a total of 937 genes were differential expressed between the two groups. Compared to CVO embryos, the CVT ones exhibited downregulation of gene clusters including ribosomal proteins, mitochondrial ribosomal protein, eukaryotic translation initiation factors, ATP synthases, NADH dehydrogenase and cytochrome c oxidases. Nonetheless, downregulation of these genes could be associated with pre and postnatal abnormalities observed after transfer of in vitro embryos. CONCLUSION: The present study provides a detailed inventory of differentially expressed gene signatures and pathways specifically reflective of the developmental environment and future developmental capacities of bovine embryos suggesting that transcriptome activity observed in blastocysts could be indicative of further pregnancy success but also adaptation to culture environment.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Bovinos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gravidez , Transcriptoma
12.
Cell Tissue Res ; 385(3): 769-783, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34008050

RESUMO

Transcription factors (TFs) are known to be involved in regulating the expression of several classes of genes during folliculogenesis. However, the regulatory role of TFs during oxidative stress (OS) is not fully understood. The current study was aimed to investigate the regulation of the TFs in bovine granulosa cells (bGCs) during exposure to OS induced by H2O2 in vitro. For this, bGCs derived from ovarian follicles were cultured in vitro till their confluency and then treated with H2O2 for 40 min. Twenty-four hours later, cells were subjected to various phenotypic and gene expression analyses for genes related to TFs, endoplasmic reticulum stress, apoptosis, cell proliferation, and differentiation markers. The bGCs exhibited higher reactive oxygen species accumulation, DNA fragmentation, and endoplasmic reticulum stress accompanied by reduction of mitochondrial activity after exposure to OS. In addition, higher lipid accumulation and lower cell proliferation were noticed in H2O2-challenged cells. The mRNA level of TFs including NRF2, E2F1, KLF6, KLF9, FOS, SREBF1, SREBF2, and NOTCH1 was increased in H2O2-treated cells compared with non-treated controls. However, the expression level of KLF4 and its downstream gene, CCNB1, were downregulated in the H2O2-challenged group. Moreover, targeted inhibition of NRF2 using small interference RNA resulted in reduced expression of KLF9, FOS, SREBF2, and NOTCH1 genes, while the expression of KLF4 was upregulated. Taken together, bovine granulosa cells exposed to OS exhibited differential expression of various transcription factors, which are mediated by the NRF2 signaling pathway.


Assuntos
Células da Granulosa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Bovinos , Feminino , Transdução de Sinais , Transfecção
13.
J Biochem Mol Toxicol ; 35(8): e22816, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34043862

RESUMO

The present study was conducted to investigate the potential adverse effect of Pb on pregnant Sprague-Dawley rats and their fetuses after maternal exposure, on gestational days (GD) 7-16. The possible protective role of taurine (TA), administered throughout the gestation period (GD 1-20) against Pb toxicity, was also evaluated. Pregnant rats were divided into four groups: Group 1 (control) was given distilled water; Group 2 was exposed to Pb (250 ppm) in drinking water (GD 7-16), whereas Group 3 received TA (50 mg/kg/day) by oral gavage (GD 1-20); Group 4 was exposed to Pb (GD 7-16), whereas pretreated with TA from GD 1 till the end of the gestation period. After termination on GD 20, maternal and embryo-fetal outcomes were evaluated. Blood samples were collected for hematological and biochemical parameters assessment. The results showed that, Pb induced a significant reduction in the maternal body weight, weight gain, uterine and placental weight, in addition to a high incidence of abortion and fetal resorption. Meanwhile, fetuses demonstrated decreased body weight and length, with a high rate of mortality as well as external and skeletal abnormalities. Additionally, Pb induced severe hematological and biochemical alterations in both dams and fetuses. The toxicity of Pb was further emphasized by placental histopathological examination and hepatic DNA fragmentation. Pretreatment with TA greatly attenuated the impact of Pb on both maternal and fetal parameters. Moreover, TA alleviated the incidence of placental damage and hepatic DNA fragmentation. The results highlight the potential prophylaxis role of TA against maternal and developmental Pb toxicity.


Assuntos
Chumbo/toxicidade , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Taurina/farmacologia , Animais , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Ratos , Ratos Sprague-Dawley
14.
Zygote ; 29(6): 435-444, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33890561

RESUMO

Dynamic changes in microRNAs in oocyte and cumulus cells before and after maturation may explain the spatiotemporal post-transcriptional gene regulation within bovine follicular cells during the oocyte maturation process. miR-20a has been previously shown to regulate proliferation and differentiation as well as progesterone levels in cultured bovine granulosa cells. In the present study, we aimed to demonstrate the function of miR-20a during the bovine oocyte maturation process. Maturation of cumulus-oocyte complexes (COCs) was performed at 39°C in an humidified atmosphere with 5% CO2 in air. The expression of miR-20a was investigated in the cumulus cells and oocytes at 22 h post culture. The functional role of miR-20a was examined by modulating the expression of miR-20a in COCs during in vitro maturation (IVM). We found that the miR-20a expression was increased in cumulus cells but decreased in oocytes after IVM. Overexpression of miR-20a increased the oocyte maturation rate. Even though not statistically significant, miR-20a overexpression during IVM increased progesterone levels in the spent medium. This was further supported by the expression of STAR and CYP11A1 genes in cumulus cells. The phenotypes observed due to overexpression of miR-20a were validated by BMP15 supplementation during IVM and subsequent transfection of BMP15-treated COCs using miR-20a mimic or BMPR2 siRNA. We found that miR-20a mimic or BMPR2 siRNA transfection rescued BMP15-reduced oocyte maturation and progesterone levels. We concluded that miR-20a regulates oocyte maturation by increasing cumulus cell progesterone synthesis by simultaneous suppression of BMPR2 expression.


Assuntos
Células do Cúmulo , Técnicas de Maturação in Vitro de Oócitos/veterinária , MicroRNAs , Animais , Bovinos , Feminino , MicroRNAs/genética , Oócitos , Oogênese/genética
15.
Cryobiology ; 99: 64-77, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33485896

RESUMO

Epididymal sperm shows higher cryoresistance than ejaculated sperm. Although the sperm proteome seems to affect cell cryoresistance, studies aiming at identifying proteins involved in sperm freezing-tolerance are scarce. The aims of this study were to investigate differences of sperm freezability and proteome between epididymal and ejaculated sperm in three mountain ungulates: Iberian ibex, Mouflon and Chamois. Sperm samples were cryopreserved in straws by slow freezing. Tandem mass tag-labeled peptides from sperm samples were analyzed by high performance liquid chromatography coupled to a mass spectrometer in three technical replicates. The statistical analysis was done using the moderated t-test of the R package limma. Differences of freezability between both types of sperm were associated with differences of the proteome. Overall, epididymal sperm showed higher freezability than ejaculated sperm. Between 1490 and 1883 proteins were quantified in each species and type of sperm sample. Cross species comparisons revealed a total of 76 proteins that were more abundant in epididymal than in ejaculated sperm in the three species of study whereas 3 proteins were more abundant in ejaculated than epididymal sperm in the three species of study (adjusted P < 0.05; |log2| fold-change > 0.5). Many of the proteins that were associated with higher cryoresistance are involved in stress response and redox homeostasis. In conclusion, marked changes of sperm proteome were detected between epididymal and ejaculated sperm. This work contributes to update the sperm proteome of small ruminants and to identify candidate markers of sperm freezability.


Assuntos
Preservação do Sêmen , Animais , Criopreservação/métodos , Epididimo , Masculino , Proteoma , Ruminantes , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides
16.
Animals (Basel) ; 11(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477702

RESUMO

The surgical castration of young male piglets without anesthesia is no longer allowed in Germany from 2021. One alternative is breeding against boar taint, but shared synthesis pathways of androstenone (AND) and several endocrine fertility parameters (EFP) indicate a risk of decreasing fertility. The objective of this study was to investigate the genetic background between AND, skatole (SKA), and six EFP in purebred Landrace (LR) and Large White (LW) populations. The animals were clustered according to their genetic relatedness because of their different origins. Estimated heritabilities (h2) of AND and SKA ranged between 0.52 and 0.34 in LR and LW. For EFP, h2 differed between the breeds except for follicle-stimulating hormone (FSH) (h2: 0.28-0.37). Both of the breeds showed unfavorable relationships between AND and testosterone, 17-ß estradiol, and FSH. The genetic relationships (rg) between SKA and EFP differed between the breeds. A genome-wide association analysis revealed 48 significant associations and confirmed a region for SKA on S us S crofa chromosome (SSC) 14. For EFP, the results differed between the clusters. In conclusion, rg partly confirmed physiologically expected antagonisms between AND and EFP. Particular attention should be spent on fertility traits that are based on EFP when breeding against boar taint to balance the genetic progress in both of the trait complexes.

17.
Sci Rep ; 10(1): 15824, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978452

RESUMO

Elevated summer temperature is reported to be the leading cause of stress in dairy and beef cows, which negatively affects various reproductive functions. Follicular cells respond to heat stress (HS) by activating the expression of heat shock family proteins (HSPs) and other antioxidants. HS is reported to negatively affect the bi-directional communication between the follicular cells and the oocyte, which is partly mediated by follicular fluid extracellular vesicles (EVs) released from surrounding cells. As carriers of bioactive molecules (DNA, RNA, protein, and lipids), the involvement of EVs in mediating the stress response in follicular cells is not fully understood. Here we used an in vitro model to decipher the cellular and EV-coupled miRNAs of bovine granulosa cells in response to HS. Moreover, the protective role of stress-related EVs against subsequent HS was assessed. For this, bovine granulosa cells from smaller follicles were cultured in vitro and after sub-confluency, cells were either kept at 37 °C or subjected to HS (42 °C). Results showed that granulosa cells exposed to HS increased the accumulation of ROS, total oxidized protein, apoptosis, and the expression of HSPs and antioxidants, while the viability of cells was reduced. Moreover, 14 and 6 miRNAs were differentially expressed in heat-stressed granulosa cells and the corresponding EVs, respectively. Supplementation of stress-related EVs in cultured granulosa cells has induced adaptive response to subsequent HS. However, this potential was not pronounced when the cells were kept under 37 °C. Taking together, EVs generated from granulosa cells exposed to HS has the potential to shuttle bioactive molecules to recipient cells and make them robust to subsequent HS.


Assuntos
Doenças dos Bovinos/prevenção & controle , Vesículas Extracelulares/metabolismo , Células da Granulosa/metabolismo , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Folículo Ovariano/metabolismo , Animais , Apoptose , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células da Granulosa/patologia , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/fisiopatologia , Folículo Ovariano/patologia
18.
BMC Genet ; 21(1): 61, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513168

RESUMO

BACKGROUND: Due to ethical reasons, surgical castration of young male piglets in their first week of life without anesthesia will be banned in Germany from 2021. Breeding against boar taint is already implemented in sire breeds of breeding organizations but in recent years a low demand made this trait economically less important. The objective of this study was to estimate heritabilities and genetic relationships between boar taint compounds androstenone and skatole and maternal/paternal reproduction traits in 4'924 Landrace (LR) and 4'299 Large White (LW) animals from nucleus populations. Additionally, genome wide association analysis (GWAS) was performed per trait and breed to detect SNP marker with possible pleiotropic effects that are associated with boar taint and fertility. RESULTS: Estimated heritabilities (h2) were 0.48 (±0.08) for LR (0.39 ± 0.07 for LW) for androstenone and 0.52 (±0.08) for LR (0.32 ± 0.07 for LW) for skatole. Heritabilities for reproduction did not differ between breeds except age at first insemination (LR: h2 = 0.27 (±0.05), LW: h2 = 0.34 (±0.05)). Estimates of genetic correlation (rg) between boar taint and fertility were different in LR and LW breeds. In LR an unfavorable rg of 0.31 (±0.15) was observed between androstenone and number of piglets born alive, whereas this rg in LW (- 0.15 (±0.16)) had an opposite sign. A similar breed-specific difference is observed between skatole and sperm count. Within LR, the rg of 0.08 (±0.13) indicates no relationship between the traits, whereas the rg of - 0.37 (±0.14) in LW points to an unfavorable relationship. In LR GWAS identified QTL regions on SSC5 (21.1-22.3 Mb) for androstenone and on SSC6 (5.5-7.5 Mb) and SSC14 (141.1-141.6 Mb) for skatole. For LW, one marker was found on SSC17 at 48.1 Mb for androstenone and one QTL on SSC14 between 140.5 Mb and 141.6 Mb for skatole. CONCLUSION: Knowledge about such genetic correlations could help to balance conventional breeding programs with boar taint in maternal breeds. QTL regions with unfavorable pleiotropic effects on boar taint and fertility could have deleterious consequences in genomic selection programs. Constraining the weighting of these QTL in the genomic selection formulae may be a useful strategy to avoid physiological imbalances.


Assuntos
Cruzamento , Fertilidade/genética , Carne de Porco/análise , Suínos/genética , Androstenos/análise , Animais , Estudos de Associação Genética/veterinária , Genótipo , Alemanha , Masculino , Fenótipo , Locos de Características Quantitativas , Escatol/análise
19.
Reprod Domest Anim ; 55(10): 1275-1285, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32323384

RESUMO

Nrf2 is a master regulator for antioxidant machinery against oxidative stress in bovine preimplantation embryos. The endogenous or exogenous modulation of Nrf2-KEAP1 system in bovine embryos may contribute to the understanding of the mechanisms behind the response of embryos to stress conditions. Therefore, here we aimed to investigate the protective effect of quercetin on bovine preimplantation embryos exposed to higher atmospheric oxygen concentration. For that, blastocysts, which were developed from zygotes cultured in media supplemented with or without quercetin under high oxygen level (20%), were subjected intracellular ROS level and mitochondrial analysis, and determining blastocyst formation rate and total cell number. Moreover, mRNA and protein expression level of Nrf2 and selected downstream antioxidant genes were investigated in the resulting blastocysts. Quercetin supplementation in vitro culture did not affect cleavage and blastocyst rate until day 7. However, quercetin supplementation resulted in higher blastocyst total cell number and reduction of intracellular ROS level accompanied by increasing mitochondrial activity compared with control group in both day 7 and day 8 blastocysts. Moreover, quercetin supplementation induced mRNA and protein of Nrf2 with subsequent increase in the expression of downstream antioxidants namely: NQO1, PRDX1, CAT and SOD1 antioxidants. In conclusion, quercetin protects preimplantation embryos against oxidative stress and improves embryo viability through modulation of the Nrf2 signalling pathway.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Animais , Antioxidantes/farmacologia , Blastocisto , Bovinos , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio , Transdução de Sinais
20.
Cell Tissue Res ; 380(3): 643-655, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32185525

RESUMO

Lead (Pb), one of the pervasive and protracted environmental heavy metals, is believed to affect the female reproductive system in many species. The Nrf2 and NF-κB are the two key transcriptional factors regulating cellular redox status and response against stress and inflammation respectively, showing an interaction between each other. The aim of this study is to investigate the effect of Pb on bovine granulosa cells (GCs) and its association with the regulation of Nrf2 and NF-κB pathways. For this, bovine GCs were cultured in vitro and exposed to different doses of Pb for 2 h. Cellular response to Pb insult was investigated 24 h post treatment. Results showed that exposure of GCs to Pb-induced ROS accumulation and protein carbonylation. Additionally, GCs exhibited reduction in cell viability and decrease in the expression of cell proliferation marker genes (CCND2 and PCNA). This was accompanied by cell cycle arrest at G0/G1 phase. Moreover, Pb downregulated both Nrf2 and NF-κB and their downstream genes. Lead increased the expression of endoplasmic reticulum (ER) stress marker genes (GRP78 and CHOP) and the proapoptotic gene (caspase-3) while the antiapoptotic gene (BCL-2) was reduced. Our findings suggest that Pb-driven oxidative stress affected GCs proliferation, enhances ER stress, induces cell cycle arrest and mediates apoptosis probably via disruption of Nrf2/NF-κB cross-talk. However, further functional analysis is required to explain different aspects of Nrf2 and NF-κB interactions under metal challenge.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Células da Granulosa , Chumbo/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...