Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 298(Pt B): 137-147, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28988910

RESUMO

Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease.


Assuntos
Encéfalo/efeitos dos fármacos , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos
2.
Mol Genet Genomic Med ; 5(1): 66-75, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116331

RESUMO

BACKGROUND: The ability to discover genetic variants in a patient runs far ahead of the ability to interpret them. Databases with accurate descriptions of the causal relationship between the variants and the phenotype are valuable since these are critical tools in clinical genetic diagnostics. Here, we introduce a comprehensive and global genotype-phenotype database focusing on rare diseases. METHODS: This database (CentoMD ®) is a browser-based tool that enables access to a comprehensive, independently curated system utilizing stringent high-quality criteria and a quickly growing repository of genetic and human phenotype ontology (HPO)-based clinical information. Its main goals are to aid the evaluation of genetic variants, to enhance the validity of the genetic analytical workflow, to increase the quality of genetic diagnoses, and to improve evaluation of treatment options for patients with hereditary diseases. The database software correlates clinical information from consented patients and probands of different geographical backgrounds with a large dataset of genetic variants and, when available, biomarker information. An automated follow-up tool is incorporated that informs all users whenever a variant classification has changed. These unique features fully embedded in a CLIA/CAP-accredited quality management system allow appropriate data quality and enhanced patient safety. RESULTS: More than 100,000 genetically screened individuals are documented in the database, resulting in more than 470 million variant detections. Approximately, 57% of the clinically relevant and uncertain variants in the database are novel. Notably, 3% of the genetic variants identified and previously reported in the literature as being associated with a particular rare disease were reclassified, based on internal evidence, as clinically irrelevant. CONCLUSIONS: The database offers a comprehensive summary of the clinical validity and causality of detected gene variants with their associated phenotypes, and is a valuable tool for identifying new disease genes through the correlation of novel genetic variants with specific, well-defined phenotypes.

3.
J Chem Neuroanat ; 83-84: 82-90, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27836486

RESUMO

Vesicular monoamine transporter 2 (VMAT2, SLC18A2) is a transmembrane transporter protein that packages dopamine, serotonin, norepinephrine, and histamine into vesicles in preparation for neurotransmitter release from the presynaptic neuron. VMAT2 function and related vesicle dynamics have been linked to susceptibility to oxidative stress, exogenous toxicants, and Parkinson's disease. To address a recent depletion of commonly used antibodies to VMAT2, we generated and characterized a novel rabbit polyclonal antibody generated against a 19 amino acid epitope corresponding to an antigenic sequence within the C-terminal tail of mouse VMAT2. We used genetic models of altered VMAT2 expression to demonstrate that the antibody specifically recognizes VMAT2 and localizes to synaptic vesicles. Furthermore, immunohistochemical labeling using this VMAT2 antibody produces immunoreactivity that is consistent with expected VMAT2 regional distribution. We show the distribution of VMAT2 in monoaminergic brain regions of mouse brain, notably the midbrain, striatum, olfactory tubercle, dopaminergic paraventricular nuclei, tuberomammillary nucleus, raphe nucleus, and locus coeruleus. Normal neurotransmitter vesicle dynamics are critical for proper health and functioning of the nervous system, and this well-characterized VMAT2 antibody will be a useful tool in studying neurodegenerative and neuropsychiatric conditions characterized by vesicular dysfunction.


Assuntos
Química Encefálica , Encéfalo/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/biossíntese , Animais , Anticorpos , Especificidade de Anticorpos , Imuno-Histoquímica , Camundongos , Coelhos , Proteínas Vesiculares de Transporte de Monoamina/análise
4.
Nat Neurosci ; 19(4): 578-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26900925

RESUMO

Neurotransmission at dopaminergic synapses has been studied with techniques that provide high temporal resolution, but cannot resolve individual synapses. To elucidate the spatial dynamics and heterogeneity of individual dopamine boutons, we developed fluorescent false neurotransmitter 200 (FFN200), a vesicular monoamine transporter 2 (VMAT2) substrate that selectively traces monoamine exocytosis in both neuronal cell culture and brain tissue. By monitoring electrically evoked Ca(2+) transients with GCaMP3 and FFN200 release simultaneously, we found that only a small fraction of dopamine boutons that exhibited Ca(2+) influx engaged in exocytosis, a result confirmed with activity-dependent loading of the endocytic probe FM1-43. Thus, only a low fraction of striatal dopamine axonal sites with uptake-competent VMAT2 vesicles are capable of transmitter release. This is consistent with the presence of functionally 'silent' dopamine vesicle clusters and represents, to the best of our knowledge, the first report suggestive of presynaptically silent neuromodulatory synapses.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Exocitose/fisiologia , Corantes Fluorescentes/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Corpo Estriado/química , Dopamina/análise , Feminino , Corantes Fluorescentes/análise , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurotransmissores/análise , Neurotransmissores/metabolismo , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/química , Vesículas Sinápticas/química
5.
J Biol Chem ; 290(11): 6799-809, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25596531

RESUMO

1-Methyl-4-phenylpyridinium (MPP(+)), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, selectively kills dopaminergic neurons in vivo and in vitro via a variety of toxic mechanisms, including mitochondrial dysfunction, generation of peroxynitrite, induction of apoptosis, and oxidative stress due to disruption of vesicular dopamine (DA) storage. To investigate the effects of acute MPP(+) exposure on neuronal DA homeostasis, we measured stimulation-dependent DA release and non-exocytotic DA efflux from mouse striatal slices and extracellular, intracellular, and cytosolic DA (DAcyt) levels in cultured mouse ventral midbrain neurons. In acute striatal slices, MPP(+) exposure gradually decreased stimulation-dependent DA release, followed by massive DA efflux that was dependent on MPP(+) concentration, temperature, and DA uptake transporter activity. Similarly, in mouse midbrain neuronal cultures, MPP(+) depleted vesicular DA storage accompanied by an elevation of cytosolic and extracellular DA levels. In neuronal cell bodies, increased DAcyt was not due to transmitter leakage from synaptic vesicles but rather to competitive MPP(+)-dependent inhibition of monoamine oxidase activity. Accordingly, monoamine oxidase blockers pargyline and l-deprenyl had no effect on DAcyt levels in MPP(+)-treated cells and produced only a moderate effect on the survival of dopaminergic neurons treated with the toxin. In contrast, depletion of intracellular DA by blocking neurotransmitter synthesis resulted in ∼30% reduction of MPP(+)-mediated toxicity, whereas overexpression of VMAT2 completely rescued dopaminergic neurons. These results demonstrate the utility of comprehensive analysis of DA metabolism using various electrochemical methods and reveal the complexity of the effects of MPP(+) on neuronal DA homeostasis and neurotoxicity.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurotoxinas/toxicidade , Animais , Células Cultivadas , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
6.
J Neurosci ; 33(42): 16778-89, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133278

RESUMO

NMDA receptor activity is involved in shaping synaptic connections throughout development and adulthood. We recently reported that brief activation of NMDA receptors on cultured ventral midbrain dopamine neurons enhanced their axon growth rate and induced axonal branching. To test whether this mechanism was relevant to axon regrowth in adult animals, we examined the reinnervation of dorsal striatum following nigral dopamine neuron loss induced by unilateral intrastriatal injections of the toxin 6-hydroxydopamine. We used a pharmacological approach to enhance NMDA receptor-dependent signaling by treatment with an inhibitor of glycine transporter-1 that elevates levels of extracellular glycine, a coagonist required for NMDA receptor activation. All mice displayed sprouting of dopaminergic axons from spared fibers in the ventral striatum to the denervated dorsal striatum at 7 weeks post-lesion, but the reinnervation in mice treated for 4 weeks with glycine uptake inhibitor was approximately twice as dense as in untreated mice. The treated mice also displayed higher levels of striatal dopamine and a complete recovery from lateralization in a test of sensorimotor behavior. We confirmed that the actions of glycine uptake inhibition on reinnervation and behavioral recovery required NMDA receptors in dopamine neurons using targeted deletion of the NR1 NMDA receptor subunit in dopamine neurons. Glycine transport inhibitors promote functionally relevant sprouting of surviving dopamine axons and could provide clinical treatment for disorders such as Parkinson's disease.


Assuntos
Axônios/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Doença de Parkinson Secundária/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Comportamento Animal/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Mesencéfalo/metabolismo , Camundongos , Destreza Motora/fisiologia , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Recuperação de Função Fisiológica/fisiologia , Substância Negra/metabolismo
7.
Cell Signal ; 25(11): 2210-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872074

RESUMO

The canonical Wnt signalling pathway plays a critical role in development and disease. The key player of the pathway is ß-catenin. Its activity is mainly regulated by the destruction complex consisting of APC, Axin and GSK3. In the nucleus, the complex formation of ß-catenin and TCF initiates target gene expression. Our study provides a comprehensive analysis of the role of nucleo-cytoplasmic shuttling of APC, Axin, and GSK3 and the inactivation of ß-catenin by the destruction complex in Wnt/ß-catenin signalling. We address the following questions: Can nucleo-cytoplasmic shuttling of APC, Axin and GSK3 increase the [ß-catenin/TCF] concentration? And, how is the [ß-catenin/TCF] concentration influenced by phosphorylation and subsequent degradation of nuclear ß-catenin? Based on experimental findings, we develop a compartmental model and conduct several simulation experiments. Our analysis reveals the following key findings: 1) nucleo-cytoplasmic shuttling of ß-catenin and its antagonists can yield a spatial separation between the said proteins, which results in a breakdown of ß-catenin degradation, followed by an accumulation of ß-catenin and hence leads to an increase of the [ß-catenin/TCF] concentration. Our results strongly suggest that Wnt signalling can benefit from nucleo-cytoplasmic shuttling of APC, Axin and GSK3, although they are in general ß-catenin antagonising proteins. 2) The total robustness of the [ß-catenin/TCF] output is closely linked to its absolute concentration levels. We demonstrate that the compartmental separation of ß-catenin and the destruction complex does not only lead to a maximization, but additionally to an increased robustness of [ß-catenin/TCF] signalling against perturbations in the cellular environment. 3) A nuclear accumulation of the destruction complex renders the pathway robust against fluctuations in Wnt signalling and against changes in the compartmental distribution of ß-catenin. 4) Elucidating the impact of destruction complex inhibition, we show that the [ß-catenin/TCF] concentration is more effectively enhanced by inhibition of the kinase GSK3 rather than the binding of ß-catenin to the destruction complex.


Assuntos
Proteína Axina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Modelos Estatísticos , Via de Sinalização Wnt , Proteínas de Xenopus/metabolismo , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteína Axina/genética , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/genética , Citosol/metabolismo , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Cinética , Mamíferos/genética , Mamíferos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , beta Catenina/genética
8.
BMC Syst Biol ; 6: 74, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22727043

RESUMO

BACKGROUND: Proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in formation of neurotoxic Aß peptides, causative of neurodegeneration in Alzheimer's disease (AD). Processing involves monomeric and dimeric forms of APP that traffic through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and major AD risk factor. RESULTS: In this study, we developed a multi-compartment model to simulate the complexity of APP processing in neurons and to accurately describe the effects of SORLA on these processes. Based on dose-response data, our study concludes that SORLA specifically impairs processing of APP dimers, the preferred secretase substrate. In addition, SORLA alters the dynamic behavior of ß-secretase, the enzyme responsible for the initial step in the amyloidogenic processing cascade. CONCLUSIONS: Our multi-compartment model represents a major conceptual advance over single-compartment models previously used to simulate APP processing; and it identified APP dimers and ß-secretase as the two distinct targets of the inhibitory action of SORLA in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Proteólise , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Regulação da Expressão Gênica , Multimerização Proteica , Estrutura Secundária de Proteína , Fatores de Risco , Solubilidade
9.
EMBO J ; 31(1): 187-200, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21989385

RESUMO

The extent of proteolytic processing of the amyloid precursor protein (APP) into neurotoxic amyloid-ß (Aß) peptides is central to the pathology of Alzheimer's disease (AD). Accordingly, modifiers that increase Aß production rates are risk factors in the sporadic form of AD. In a novel systems biology approach, we combined quantitative biochemical studies with mathematical modelling to establish a kinetic model of amyloidogenic processing, and to evaluate the influence by SORLA/SORL1, an inhibitor of APP processing and important genetic risk factor. Contrary to previous hypotheses, our studies demonstrate that secretases represent allosteric enzymes that require cooperativity by APP oligomerization for efficient processing. Cooperativity enables swift adaptive changes in secretase activity with even small alterations in APP concentration. We also show that SORLA prevents APP oligomerization both in cultured cells and in the brain in vivo, eliminating the preferred form of the substrate and causing secretases to switch to a less efficient non-allosteric mode of action. These data represent the first mathematical description of the contribution of genetic risk factors to AD substantiating the relevance of subtle changes in SORLA levels for amyloidogenic processing as proposed for patients carrying SORL1 risk alleles.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células CHO , Cricetinae , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos
10.
J Theor Biol ; 279(1): 132-42, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21439299

RESUMO

ß-catenin is the key player of the canonical Wnt pathway. Its activity is mainly regulated via protein degradation. In the nucleus, its interaction with TCF initiates target gene expression. Although the functional relevance is unclear, it has been shown that ß-catenin antagonists are also capable of nucleo-cytoplasmic shuttling. The focus of our systems biology analysis lies on the ß-catenin subcellular distribution regulated by the antagonist and scaffolding protein APC. We address the following questions: Can the concentration of the transcription factor complex [ß-catenin/TCF], which is considered as the output of the pathway, be maximized by APC nucleo-cytoplasmic shuttling and how is retention of ß-catenin by APC influencing this output? We established a mathematical model based on experimental findings to examine the influence of nucleo-cytoplasmic shuttling of APC and retention of ß-catenin by APC on the output of the pathway. The model is based on ordinary differential equations and includes protein shuttling between the two compartments nucleus and cytoplasm as well as protein complex formation in each compartment. We discuss how the steady state concentration of [ß-catenin/TCF] is influenced by APC shuttling and retention. The analysis of the model shows that the breakdown of ß-catenin cytoplasmic retention induced by APC shuttling can enhance nuclear accumulation of ß-catenin and hence maximize the output of the pathway. Using mathematical modelling, we demonstrate that in certain parameter ranges, the steady state concentration of [ß-catenin/TCF] benefits from APC shuttling. The inhibitory effect of APC is alleviated due to shuttling of APC. Surprisingly, our study therefore indicates that the nucleo-cytoplasmic shuttling of APC can have a beneficial effect on the output of the pathway in steady state, although APC is in general a ß-catenin antagonizing protein. Furthermore, we show that saturated protein translocation can under certain conditions be modelled by pure diffusion. A difference in the shuttling rate constants of sufficient orders of magnitude leads to an accumulation in either compartment, which corresponds to saturation in translocation.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Núcleo Celular/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/metabolismo , Difusão Facilitada , Cinética , Transporte Proteico , Transdução de Sinais , Proteínas Wnt/metabolismo
11.
J Neurosci ; 29(38): 11973-81, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19776283

RESUMO

Dopamine-releasing neurons of the substantia nigra pars compacta produce an extraordinarily dense and expansive plexus of innervation in the striatum converging with glutamatergic corticostriatal and thalamostriatal axon terminals at dendritic spines of medium spiny neurons. Here, we investigated whether glutamatergic signaling promotes arborization and growth of dopaminergic axons. In postnatal ventral midbrain cultures, dopaminergic axons rapidly responded to glutamate stimulation with accelerated growth and growth cone splitting when NMDA and AMPA/kainate receptors were activated. In contrast, when AMPA/kainate receptors were selectively activated, axon growth rate was decreased. To address whether this switch in axonal growth response was mediated by distinct calcium signals, we used calcium imaging. Combined NMDA and AMPA/kainate receptor activation elicited calcium signals in axonal growth cones that were mediated by calcium influx through L-type voltage-gated calcium channels and ryanodine receptor-induced calcium release from intracellular stores. AMPA/kainate receptor activation alone elicited calcium signals that were solely attributable to calcium influx through L-type calcium channels. We found that inhibitors of calcium/calmodulin-dependent protein kinases prevented the NMDA receptor-dependent axonal growth acceleration, whereas AMPA/kainate-induced axonal growth decrease was blocked by inhibitors of calcineurin and by increased cAMP levels. Our data suggest that the balance between NMDA and AMPA/kainate receptor activation regulates the axonal arborization pattern of dopamine axons through the activation of competing calcium-dependent signaling pathways. Understanding the mechanisms of dopaminergic axonal arborization is essential to the development of treatments that aim to restore dopaminergic innervation in Parkinson's disease.


Assuntos
Axônios/fisiologia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Mesencéfalo/fisiologia , Animais , Inibidores de Calcineurina , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Células Cultivadas , AMP Cíclico/metabolismo , Cones de Crescimento/fisiologia , Espaço Intracelular/metabolismo , Ácido Caínico/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
12.
Neuron ; 62(2): 218-29, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19409267

RESUMO

The basis for selective death of specific neuronal populations in neurodegenerative diseases remains unclear. Parkinson's disease (PD) is a synucleinopathy characterized by a preferential loss of dopaminergic neurons in the substantia nigra (SN), whereas neurons of the ventral tegmental area (VTA) are spared. Using intracellular patch electrochemistry to directly measure cytosolic dopamine (DA(cyt)) in cultured midbrain neurons, we confirm that elevated DA(cyt) and its metabolites are neurotoxic and that genetic and pharmacological interventions that decrease DA(cyt) provide neuroprotection. L-DOPA increased DA(cyt) in SN neurons to levels 2- to 3-fold higher than in VTA neurons, a response dependent on dihydropyridine-sensitive Ca2+ channels, resulting in greater susceptibility of SN neurons to L-DOPA-induced neurotoxicity. DA(cyt) was not altered by alpha-synuclein deletion, although dopaminergic neurons lacking alpha-synuclein were resistant to L-DOPA-induced cell death. Thus, an interaction between Ca2+, DA(cyt), and alpha-synuclein may underlie the susceptibility of SN neurons in PD, suggesting multiple therapeutic targets.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Dopamina/metabolismo , Neurônios/citologia , Substância Negra/citologia , alfa-Sinucleína/metabolismo , Animais , Animais Recém-Nascidos , Calbindinas , Bloqueadores dos Canais de Cálcio/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Citosol/efeitos dos fármacos , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Eletroquímica/métodos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Humanos , Hidrazinas/farmacologia , Levodopa/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteína G de Ligação ao Cálcio S100/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , alfa-Sinucleína/deficiência
13.
Neuron ; 55(1): 8-10, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17610813

RESUMO

Pacemaking activity in adult substantia nigra (SN) dopamine neurons relies on L-type Ca2+ channels, but a surprising study in Nature by Chan et al. demonstrates that blockade of these channels by dihydropyridines re-establishes the pacemaking driven by sodium and HCN channels found in juvenile SN. This shift protects SN neurons in chemical models of Parkinson's disease (PD), suggesting that elevated intracellular Ca2+ participates in SN cell loss and that dihydropyridines may provide therapy in PD.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Doença de Parkinson/fisiopatologia , Substância Negra/fisiopatologia , Animais , Antiparkinsonianos , Relógios Biológicos/fisiologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/uso terapêutico , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Doença de Parkinson/genética , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/fisiopatologia , Canais de Potássio/genética , Canais de Potássio/fisiologia , Substância Negra/efeitos dos fármacos
14.
J Neurosci ; 26(46): 11915-22, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17108165

RESUMO

Alpha-synuclein (alpha-syn), a protein implicated in Parkinson's disease pathogenesis, is a presynaptic protein suggested to regulate transmitter release. We explored how alpha-syn overexpression in PC12 and chromaffin cells, which exhibit low endogenous alpha-syn levels relative to neurons, affects catecholamine release. Overexpression of wild-type or A30P mutant alpha-syn in PC12 cell lines inhibited evoked catecholamine release without altering calcium threshold or cooperativity of release. Electron micrographs revealed that vesicular pools were not reduced but that, on the contrary, a marked accumulation of morphologically "docked" vesicles was apparent in the alpha-syn-overexpressing lines. We used amperometric recordings from chromaffin cells derived from mice that overexpress A30P or wild-type (WT) alpha-syn, as well as chromaffin cells from control and alpha-syn null mice, to determine whether the filling of vesicles with the transmitter was altered. The quantal size and shape characteristics of amperometric events were identical for all mouse lines, suggesting that overexpression of WT or mutant alpha-syn did not affect vesicular transmitter accumulation or the kinetics of vesicle fusion. The frequency and number of exocytotic events per stimulus, however, was lower for both WT and A30P alpha-syn-overexpressing cells. The alpha-syn-overexpressing cells exhibited reduced depression of evoked release in response to repeated stimuli, consistent with a smaller population of readily releasable vesicles. We conclude that alpha-syn overexpression inhibits a vesicle "priming" step, after secretory vesicle trafficking to "docking" sites but before calcium-dependent vesicle membrane fusion.


Assuntos
Catecolaminas/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , alfa-Sinucleína/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cromafins/ultraestrutura , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Masculino , Fusão de Membrana/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/ultraestrutura , Células PC12 , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Ratos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Fatores de Tempo , alfa-Sinucleína/genética
15.
Neuron ; 42(4): 653-63, 2004 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15157425

RESUMO

Dopamine input to the striatum is required for voluntary motor movement, behavioral reinforcement, and responses to drugs of abuse. It is speculated that these functions are dependent on either excitatory or inhibitory modulation of corticostriatal synapses onto medium spiny neurons (MSNs). While dopamine modulates MSN excitability, a direct presynaptic effect on the corticostriatal input has not been clearly demonstrated. We combined optical monitoring of synaptic vesicle exocytosis from motor area corticostriatal afferents and electrochemical recordings of striatal dopamine release to directly measure effects of dopamine at the level of individual presynaptic terminals. Dopamine released by either electrical stimulation or amphetamine acted via D2 receptors to inhibit the activity of subsets of corticostriatal terminals. Optical and electrophysiological data suggest that heterosynaptic inhibition was enhanced by higher frequency stimulation and was selective for the least active terminals. Thus, dopamine, by filtering less active inputs, appears to reinforce specific sets of corticostriatal synaptic connections.


Assuntos
Vias Aferentes/metabolismo , Córtex Cerebral/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Neostriado/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/ultraestrutura , Anfetamina/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/ultraestrutura , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Retroalimentação/efeitos dos fármacos , Retroalimentação/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neostriado/efeitos dos fármacos , Neostriado/ultraestrutura , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/ultraestrutura , Compostos de Piridínio , Compostos de Amônio Quaternário , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura
16.
J Neurochem ; 87(2): 273-89, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14511105

RESUMO

The development of electrochemical recordings with small carbon-fiber electrodes has significantly advanced the understanding of the regulation of catecholamine transmission in various brain areas. Recordings in vivo or in slice preparations monitor diffusion of catecholamine following stimulated synaptic release into the surrounding tissue. This synaptic 'overflow' is defined by the amount of release, by the activity of reuptake, and by the diffusion parameters in brain tissue. Such studies have elucidated the complex regulation of catecholamine release and uptake, and how psychostimulants and anti-psychotic drugs interfere with it. Moreover, recordings with carbon-fiber electrodes from cultured neurons have provided analysis of catecholamine release and its plasticity at the quantal level.


Assuntos
Dopamina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Catecolaminas/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Eletrofisiologia , Humanos , Técnicas In Vitro , Microeletrodos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 99(22): 14524-9, 2002 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-12376616

RESUMO

Parkinson's disease (PD) is most commonly a sporadic illness, and is characterized by degeneration of substantia nigra dopamine (DA) neurons and abnormal cytoplasmic aggregates of alpha-synuclein. Rarely, PD may be caused by missense mutations in alpha-synuclein. MPTP, a neurotoxin that inhibits mitochondrial complex I, is a prototype for an environmental cause of PD because it produces a pattern of DA neurodegeneration that closely resembles the neuropathology of PD. Here we show that alpha-synuclein null mice display striking resistance to MPTP-induced degeneration of DA neurons and DA release, and this resistance appears to result from an inability of the toxin to inhibit complex I. Contrary to predictions from in vitro data, this resistance is not due to abnormalities of the DA transporter, which appears to function normally in alpha-synuclein null mice. Our results suggest that some genetic and environmental factors that increase susceptibility to PD may interact with a common molecular pathway, and represent the first demonstration that normal alpha-synuclein function may be important to DA neuron viability.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Dopaminérgicos/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-fenilpiridínio/metabolismo , Animais , Monoaminas Biogênicas/metabolismo , Células Cultivadas , Dopaminérgicos/metabolismo , Resistência a Medicamentos , Complexo I de Transporte de Elétrons , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , NADH NADPH Oxirredutases/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Sinucleínas , alfa-Sinucleína
18.
J Neurosci ; 22(18): 8002-9, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12223553

RESUMO

Dysregulation of dopamine transmission is thought to contribute to schizophrenic psychosis and drug dependence. Dopamine release is regulated by D2 dopamine autoreceptors, and D2 receptor ligands are used to treat psychosis and addiction. To elucidate the long-term effects of D2 autoreceptor activity on dopamine signaling, dopamine overflow evoked by single or paired-pulse stimulation was compared in striatal slices from D2-null mutant and wild-type mice. Quinpirole, a D2/D3 receptor agonist, had no effect on evoked dopamine release in D2 mutant mice, indicating that D2 receptors are the only release-regulating receptors at the axon terminal. Dopamine release inhibition by GABA(B) receptor activation was unchanged in D2 mutant mice, suggesting that other G-protein-coupled pathways remained normal in the absence of D2 autoreceptors. Paired-pulse stimulation revealed that autoinhibition of dopamine release was maximal 500 msec after stimulation and lasted <5 sec. In D2-null mutants, dopamine overflow in response to single stimuli was severely decreased. Experiments with the uptake inhibitor nomifensine indicated that this was caused by enhanced dopamine uptake rather than reduced release. Analysis of dopamine overflow kinetics using a simulation model suggested that the enhanced uptake was caused by an increase in the maximal velocity of uptake, V(max). These results from D2-null mutant mice support the suggestion that D2 autoreceptors and dopamine transporters interact to regulate the amplitude and timing of dopamine signals.


Assuntos
Autorreceptores/metabolismo , Dopamina/metabolismo , Dopamina/farmacocinética , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/análise , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Córtex Cerebral/química , Córtex Cerebral/metabolismo , Cromatografia Líquida de Alta Pressão , Corpo Estriado/química , Corpo Estriado/metabolismo , Dopamina/análise , Estimulação Elétrica , Agonistas GABAérgicos/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Ácido Homovanílico/análise , Ácido Homovanílico/metabolismo , Técnicas In Vitro , Cinética , Camundongos , Camundongos Knockout , Terminações Pré-Sinápticas/metabolismo , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...