Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(5): 050402, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126902

RESUMO

We present measurements of a topological property, the Chern number (C_{1}), of a closed manifold in the space of two-level system Hamiltonians, where the two-level system is formed from a superconducting qubit. We manipulate the parameters of the Hamiltonian of the superconducting qubit along paths in the manifold and extract C_{1} from the nonadiabatic response of the qubit. By adjusting the manifold such that a degeneracy in the Hamiltonian passes from inside to outside the manifold, we observe a topological transition C_{1}=1→0. Our measurement of C_{1} is quantized to within 2% on either side of the transition.

2.
Phys Rev Lett ; 112(22): 227601, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24949787

RESUMO

We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum.

3.
Phys Rev Lett ; 109(16): 166804, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215112

RESUMO

We demonstrate a total charge parity measurement by detecting the radio frequency signal that is reflected by a lumped-element resonator coupled to a single InAs nanowire double quantum dot. The high frequency response of the circuit is used to probe the effects of the Pauli exclusion principle at interdot charge transitions. Even parity charge transitions show a striking magnetic field dependence that is due to a singlet-triplet transition, while odd parity transitions are relatively insensitive to a magnetic field. The measured response agrees well with cavity input-output theory, allowing accurate measurements of the interdot tunnel coupling and the resonator-charge coupling rate g(c)/2π~17 MHz.

4.
Nature ; 490(7420): 380-3, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23075988

RESUMO

Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

5.
Nano Lett ; 12(9): 4711-4, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22827514

RESUMO

We characterize nanostructures of Bi(2)Se(3) that are grown via metal-organic chemical vapor deposition using the precursors diethyl selenium and trimethyl bismuth. By adjusting growth parameters, we obtain either single-crystalline ribbons up to 10 µm long or thin micrometer-sized platelets. Four-terminal resistance measurements yield a sample resistivity of 4 mΩ·cm. We observe weak antilocalization and extract a phase coherence length l(ϕ) = 178 nm and spin-orbit length l(so) = 93 nm at T = 0.29 K. Our results are consistent with previous measurements on exfoliated samples and samples grown via physical vapor deposition.


Assuntos
Bismuto/química , Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Compostos Orgânicos/química , Selênio/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Gases em Plasma/química , Propriedades de Superfície
6.
Phys Rev Lett ; 107(17): 176811, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107563

RESUMO

We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control.

7.
Nano Lett ; 10(5): 1618-22, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20384350

RESUMO

The electronic properties and nanostructure of InAs nanowires are correlated by creating multiple field effect transistors (FETs) on nanowires grown to have low and high defect density segments. 4.2 K carrier mobilities are approximately 4x larger in the nominally defect free segments of the wire. We also find that dark field optical intensity is correlated with the mobility, suggesting a simple route for selecting wires with a low defect density. At low temperatures, FETs fabricated on high defect density segments of InAs nanowires showed transport properties consistent with single electron charging, even on devices with low resistance ohmic contacts. The charging energies obtained suggest quantum dot formation at defects in the wires. These results reinforce the importance of controlling the defect density in order to produce high quality electrical and optical devices using InAs nanowires.


Assuntos
Arsenicais/química , Cristalização/métodos , Índio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Rev Sci Instrum ; 81(2): 023903, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192505

RESUMO

III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We developed hot-wall and cold-wall metal organic vapor phase epitaxy reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2x10(-9) Torr. A load lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16,000 cm(2)/(V s).

9.
Rev Sci Instrum ; 79(3): 033908, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18377026

RESUMO

A system for the simultaneous measurement of the Hall effect in 31 different locations as well as the measurement of the resistivity in 30 different locations on a single oxide thin film grown with a composition gradient is described. Considerations for designing and operating a high-throughput system for characterizing highly conductive oxides with Hall coefficients as small as 10(-10) m3/C are discussed. Results from measurements on films grown using combinatorial molecular beam epitaxy show the usefulness of characterizing combinatorial libraries via both the resistivity and the Hall effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...