Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1173634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711611

RESUMO

Introduction: Heparins, naturally occurring glycosaminoglycans, are widely used for thrombosis prevention. Upon application as anticoagulants in cancer patients, heparins were found to possess additional antitumor activities. Ectonucleotidases have recently been proposed as novel targets for cancer immunotherapy. Methods and results: In the present study, we discovered that heparin and its derivatives act as potent, selective, allosteric inhibitors of the poorly investigated ectonucleotidase NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1, CD203a). Structure-activity relationships indicated that NPP1 inhibition could be separated from the compounds' antithrombotic effect. Moreover, unfractionated heparin (UFH) and different low molecular weight heparins (LMWHs) inhibited extracellular adenosine production by the NPP1-expressing glioma cell line U87 at therapeutically relevant concentrations. As a consequence, heparins inhibited the ability of U87 cell supernatants to induce CD4+ T cell differentiation into immunosuppressive Treg cells. Discussion: NPP1 inhibition likely contributes to the anti-cancer effects of heparins, and their specific optimization may lead to improved therapeutics for the immunotherapy of cancer.


Assuntos
Glioma , Heparina , Humanos , Heparina/farmacologia , Imunoterapia , Anticoagulantes , Heparina de Baixo Peso Molecular/farmacologia , Heparina de Baixo Peso Molecular/uso terapêutico
2.
Mar Drugs ; 19(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499103

RESUMO

Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Apirase/antagonistas & inibidores , Polissacarídeos/fisiologia , Pirofosfatases/antagonistas & inibidores , Alga Marinha , Ésteres do Ácido Sulfúrico/farmacologia , Trifosfato de Adenosina/metabolismo , Apirase/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Hidrólise/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Pirofosfatases/metabolismo , Alga Marinha/química , Alga Marinha/isolamento & purificação , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...