Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139265

RESUMO

The cell-surface targeting of neo-synthesized G protein-coupled receptors (GPCRs) involves the recruitment of receptors into COPII vesicles budding at endoplasmic reticulum exit sites (ERESs). This process is regulated for some GPCRs by escort proteins, which facilitate their export, or by gatekeepers that retain the receptors in the ER. PRAF2, an ER-resident four trans- membrane domain protein with cytoplasmic extremities, operates as a gatekeeper for the GB1 protomer of the heterodimeric GABAB receptor, interacting with a tandem di-leucine/RXR retention motif in the carboxyterminal tail of GB1. PRAF2 was also reported to interact in a two-hybrid screen with a peptide corresponding to the carboxyterminal tail of the chemokine receptor CCR5 despite the absence of RXR motifs in its sequence. Using a bioluminescence resonance energy transfer (BRET)-based subcellular localization system, we found that PRAF2 inhibits, in a concentration-dependent manner, the plasma membrane export of CCR5. BRET-based proximity assays and Co-IP experiments demonstrated that PRAF2/CCR5 interaction does not require the presence of a receptor carboxyterminal tail and involves instead the transmembrane domains of both proteins. The mutation of the potential di-leucine/RXR motif contained in the third intracellular loop of CCR5 does not affect PRAF2-mediated retention. It instead impairs the cell-surface export of CCR5 by inhibiting CCR5's interaction with its private escort protein, CD4. PRAF2 and CD4 thus display opposite roles on the cell-surface export of CCR5, with PRAF2 inhibiting and CD4 promoting this process, likely operating at the level of CCR5 recruitment into COPII vesicles, which leave the ER.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Receptores CCR5 , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Leucina/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de GABA-B/metabolismo , Humanos
2.
Cell Mol Life Sci ; 79(10): 530, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167862

RESUMO

The endoplasmic reticulum exit of some polytopic plasma membrane proteins (PMPs) is controlled by arginin-based retention motifs. PRAF2, a gatekeeper which recognizes these motifs, was shown to retain the GABAB-receptor GB1 subunit in the ER. We report that PRAF2 can interact on a stoichiometric basis with both wild type and mutant F508del Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR), preventing the access of newly synthesized cargo to ER exit sites. Because of its lower abundance, compared to wild-type CFTR, CFTR-F508del recruitment into COPII vesicles is suppressed by the ER-resident PRAF2. We also demonstrate that some pharmacological chaperones that efficiently rescue CFTR-F508del loss of function in CF patients target CFTR-F508del retention by PRAF2 operating with various mechanisms. Our findings open new therapeutic perspectives for diseases caused by the impaired cell surface trafficking of mutant PMPs, which contain RXR-based retention motifs that might be recognized by PRAF2.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mutação , Ácido gama-Aminobutírico/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 883568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586623

RESUMO

More than 12 years have passed since the seminal observation that meningococcus, a pathogen causing epidemic meningitis in humans, occasionally associated with infectious vasculitis and septic shock, can promote the translocation of ß-arrestins to the cell surface beneath bacterial colonies. The cellular receptor used by the pathogen to induce signalling in host cells and allowing it to open endothelial cell junctions and reach meninges was unknown. The involvement of ß-arrestins, which are scaffolding proteins regulating G protein coupled receptor signalling and function, incited us to specifically investigate this class of receptors. In this perspective article we will summarize the events leading to the discovery that the ß2-adrenergic receptor is the receptor that initiates the signalling cascades induced by meningococcus in host cells. This receptor, however, cannot mediate cell infection on its own. It needs to be pre-associated with an "early" adhesion receptor, CD147, within a hetero-oligomeric complex, stabilized by the cytoskeletal protein α-actinin 4. It then required several years to understand how the pathogen actually activates the signalling receptor. Once bound to the N-terminal glycans of the ß2-adrenergic receptor, meningococcus provides a mechanical stimulation that induces the biased activation of ß-arrestin-mediated signalling pathways. This activating mechanical stimulus can be reproduced in the absence of any pathogen by applying equivalent forces on receptor glycans. Mechanical activation of the ß2-adrenergic receptor might have a physiological role in signalling events promoted in the context of cell-to-cell interaction.


Assuntos
Neisseria meningitidis , Arrestinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Neisseria meningitidis/metabolismo , Polissacarídeos , beta-Arrestinas/metabolismo
5.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668926

RESUMO

Transient receptor potential vanilloids (TRPV1) are non-selective cation channels that sense and transduce inflammatory pain signals. We previously reported that activation of TRPV1 induced the translocation of ß-arrestin2 (ARRB2) from the cytoplasm to the nucleus, raising questions about the functional role of ARRB2 in the nucleus. Here, we determined the ARRB2 nuclear signalosome by conducting a quantitative proteomic analysis of the nucleus-sequestered L395Q ARRB2 mutant, compared to the cytosolic wild-type ARRB2 (WT ARRB2), in a heterologous expression system. We identified clusters of proteins that localize to the nucleolus and are involved in ribosomal biogenesis. Accordingly, L395Q ARRB2 or WT ARRB2 after capsaicin treatment were found to co-localize and interact with the nucleolar marker nucleophosmin (NPM1), treacle protein (TCOF1) and RNA polymerase I (POL I). We further investigated the role of nuclear ARRB2 signaling in regulating neuroplasticity. Using neuroblastoma (neuro2a) cells and dorsal root ganglia (DRG) neurons, we found that L395Q ARRB2 mutant increased POL I activity, inhibited the tumor suppressorp53 (p53) level and caused a decrease in the outgrowth of neurites. Together, our results suggest that the activation of TRPV1 promotes the ARRB2-mediated regulation of ribosomal biogenesis in the nucleolus. The ARRB2-TCOF1-p53 checkpoint signaling pathway might be involved in regulating neurite outgrowth associated with pathological pain conditions.


Assuntos
Nucléolo Celular/metabolismo , Crescimento Neuronal , Ribossomos/metabolismo , Canais de Cátion TRPV/metabolismo , Proteína Supressora de Tumor p53/metabolismo , beta-Arrestina 2/metabolismo , Animais , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Nucleofosmina , Ligação Proteica , Transporte Proteico , Proteômica , RNA Polimerase I/metabolismo
6.
Oncogene ; 40(12): 2243-2257, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33649538

RESUMO

Mdm2 antagonizes the tumor suppressor p53. Targeting the Mdm2-p53 interaction represents an attractive approach for the treatment of cancers with functional p53. Investigating mechanisms underlying Mdm2-p53 regulation is therefore important. The scaffold protein ß-arrestin2 (ß-arr2) regulates tumor suppressor p53 by counteracting Mdm2. ß-arr2 nucleocytoplasmic shuttling displaces Mdm2 from the nucleus to the cytoplasm resulting in enhanced p53 signaling. ß-arr2 is constitutively exported from the nucleus, via a nuclear export signal, but mechanisms regulating its nuclear entry are not completely elucidated. ß-arr2 can be SUMOylated, but no information is available on how SUMO may regulate ß-arr2 nucleocytoplasmic shuttling. While we found ß-arr2 SUMOylation to be dispensable for nuclear import, we identified a non-covalent interaction between SUMO and ß-arr2, via a SUMO interaction motif (SIM), that is required for ß-arr2 cytonuclear trafficking. This SIM promotes association of ß-arr2 with the multimolecular RanBP2/RanGAP1-SUMO nucleocytoplasmic transport hub that resides on the cytoplasmic filaments of the nuclear pore complex. Depletion of RanBP2/RanGAP1-SUMO levels result in defective ß-arr2 nuclear entry. Mutation of the SIM inhibits ß-arr2 nuclear import, its ability to delocalize Mdm2 from the nucleus to the cytoplasm and enhanced p53 signaling in lung and breast tumor cell lines. Thus, a ß-arr2 SIM nuclear entry checkpoint, coupled with active ß-arr2 nuclear export, regulates its cytonuclear trafficking function to control the Mdm2-p53 signaling axis.


Assuntos
Proteínas Ativadoras de GTPase/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína SUMO-1/genética , Proteína Supressora de Tumor p53/genética , beta-Arrestina 2/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Humanos , Mutação/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Sinais de Exportação Nuclear/genética , Transdução de Sinais/genética , Sumoilação/genética
7.
ACS Pharmacol Transl Sci ; 3(2): 171-178, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296760

RESUMO

Cells are sensitive to chemical stimulation which is converted into intracellular biochemical signals by the activation of specific receptors. Mechanical stimulations can also induce biochemical responses via the activation of various mechano-sensors. Although principally appreciated for their chemosensory function, G-protein-coupled receptors (GPCRs) may participate in mechano-transduction. They are indirectly activated by the paracrine release of chemical compounds secreted in response to mechanical stimuli, but they might additionally behave as mechano-sensors that are directly stimulated by mechanical forces. Although several studies are consistent with this latter hypothesis, the molecular mechanisms of a potential direct mechanical activation of GPCRs have remained elusive until recently. In particular, investigating the activation of the catecholamine ß2-adrenergic receptor by a pathogen revealed that traction forces directly exerted on the N-terminus of the receptor via N-glycan chains activate specific signaling pathways. These findings open new perspectives in GPCR biology and pharmacology since most GPCRs express N-glycan chains in their N-terminus, which might similarly be involved in the interaction with cell-surface glycan-specific lectins in the context of cell-to-cell mechanical signaling.

8.
Cell Mol Life Sci ; 77(24): 5259-5279, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32040695

RESUMO

Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins ß-arrestins and G proteins. Depletion of ß-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that ß-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-ß-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-ß-arrestin complex to the plasma membrane, ß-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient ß-arrestin and by a specific inhibitor of ß-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of ß-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/genética , Complexos Multiproteicos/genética , Neoplasias/genética , beta-Arrestinas/genética , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Membrana Celular/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Complexos Multiproteicos/metabolismo , Neoplasias/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Ligação Proteica/genética , Domínios Proteicos/genética , Receptor Tipo 1 de Angiotensina/genética , Receptores Acoplados a Proteínas G/genética , Vasopressinas/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-31932468

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that is frequently down-modulated in human cancer. PTEN inhibits the phosphatidylinositol 3-phosphate kinase (PI3K)/AKT pathway through its lipid phosphatase activity. Multiple PI3K/AKT-independent actions of PTEN, protein-phosphatase activities and functions within the nucleus have also been described. PTEN, therefore, regulates many cellular processes including cell proliferation, survival, genomic integrity, polarity, migration, and invasion. Even a modest decrease in the functional dose of PTEN may promote cancer development. Understanding the molecular and cellular mechanisms that regulate PTEN protein levels and function, and how these may go awry in cancer contexts, is, therefore, key to fully understanding the role of PTEN in tumorigenesis. Here, we discuss current knowledge on posttranslational control and conformational plasticity of PTEN, as well as therapeutic possibilities toward reestablishment of PTEN tumor-suppressor activity in cancer.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/genética , Genes Supressores de Tumor , Humanos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/fisiologia
10.
Methods Mol Biol ; 1957: 9-55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919345

RESUMO

The ß-arrestins (ß-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. ß-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles ß-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that ß-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of ß-arrs, how ß-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.


Assuntos
Células/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Animais , Endocitose , Humanos , Modelos Biológicos , Transporte Proteico , beta-Arrestinas/química
11.
Methods Mol Biol ; 1957: 251-269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919359

RESUMO

ß-Arrestins (ß-arrs) were originally appreciated for the roles they play in the desensitization and internalization of G protein-coupled receptors (GPCRs). They are also now known to act as molecular scaffolds, providing control in multiple signalling pathways. Through their scaffolding properties, ß-arrs dynamically regulate the activity and/or subcellular distribution of protein partners giving rise to an appropriate cellular response. There are two ß-arr isoforms, namely, ß-arr1 and ß-arr2, which share high sequence homology and structural conservation. While the ß-arrs often display conserved overlapping roles, decisive differences between the isoforms also exist. A striking example of this is the subcellular distribution of the ß-arr isoforms. While ß-arr1 is distributed both in cytoplasmic and nuclear compartments, ß-arr2 displays an apparent cytoplasmic distribution. Both ß-arrs are actively imported into the nucleus, but ß-arr2 is constitutively exported by a leptomycin B-sensitive pathway due to a nuclear export signal in its C-terminus that is absent in ß-arr1. ß-arr2 therefore undergoes constitutive nucleocytoplasmic shuttling enabling the displacement of nuclear binding cargoes, such as Mdm2. Here, we describe methods to explore the differential nucleocytoplasmic shuttling capacities of the ß-arrs.


Assuntos
Núcleo Celular/metabolismo , Biologia Molecular/métodos , beta-Arrestinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Bioensaio , Imunofluorescência , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Modelos Biológicos , Mutagênese/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transformação Genética , beta-Arrestinas/química
12.
Adv Exp Med Biol ; 1110: 55-73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30623366

RESUMO

Phosphatase and tensin homolog (PTEN) is a tumour suppressor that represents one of the most common targets for genetic defect in human cancer. PTEN controls an array of physiopathological processes related to cell proliferation, differentiation, DNA/chromosome integrity, apoptosis and invasiveness. PTEN dephosphorylates not only proteins, but also phosphoinositides generated by phosphatidylinositol 3-kinase, thus counteracting the Akt signalling pathway. Interestingly, PTEN can also exert some biological functions independently of its catalytic activity.A feature of colorectal cancers is the relatively low incidence of PTEN mutation or deletion, whereas PTEN downregulation occurs in approximately one third of tumours. PTEN inactivation may be even higher when changes in posttranslational modifications and/or mislocalization of the tumour suppressor are accounted for. Strategies based on pharmacologically-induced restoration of wild-type PTEN function in colon cancer cells could therefore be considered, to impact cell growth, trigger apoptosis, and sensitize tumour cells to therapeutic agents.This review details current knowledge of the mechanisms regulating PTEN expression, activity and function. It also focuses on the use of small molecules targeting positive or negative PTEN regulators and summarizes alternative strategies that could be used to alter PTEN conformation/activity. Finally, we propose an outline of a personalized approach to restore PTEN function in colon cancer cells.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Terapia de Alvo Molecular , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Apoptose , Neoplasias Colorretais/genética , Genes Supressores de Tumor , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
13.
Nat Commun ; 8: 15764, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569760

RESUMO

Neisseria meningitidis (meningococcus) is an invasive bacterial pathogen that colonizes human vessels, causing thrombotic lesions and meningitis. Establishment of tight interactions with endothelial cells is crucial for meningococci to resist haemodynamic forces. Two endothelial receptors, CD147 and the ß2-adrenergic receptor (ß2AR), are sequentially engaged by meningococci to adhere and promote signalling events leading to vascular colonization, but their spatiotemporal coordination is unknown. Here we report that CD147 and ß2AR form constitutive hetero-oligomeric complexes. The scaffolding protein α-actinin-4 directly binds to the cytosolic tail of CD147 and governs the assembly of CD147-ß2AR complexes in highly ordered clusters at bacterial adhesion sites. This multimolecular assembly process increases the binding strength of meningococci to endothelial cells under shear stress, and creates molecular platforms for the elongation of membrane protrusions surrounding adherent bacteria. Thus, the specific organization of cellular receptors has major impacts on host-pathogen interaction.


Assuntos
Actinina/metabolismo , Basigina/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Neisseria meningitidis/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Aderência Bacteriana/fisiologia , Basigina/genética , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Humanos , Complexos Multiproteicos/metabolismo , Neisseria meningitidis/patogenicidade , Receptores Adrenérgicos beta 2/genética
14.
Methods Mol Biol ; 1388: 95-110, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27033073

RESUMO

Tumor suppressor PTEN phosphatase acts to inhibit the PI3K/AKT pathway and thus regulates cell proliferation, survival, and migration. Dysregulation of PTEN function is observed in a wide range of cancers. In addition to alterations of the PTEN gene, repression of PTEN function can also occur at the protein level through changes in PTEN conformation, localization, activity, and stability. The ability to follow switches in PTEN conformation in live cells provides a rapid approach to study changes in PTEN function and may provide a basis to screen pharmacological agents aimed at enhancing or reestablishing PTEN-dependent signaling pathways that have gone awry in cancer. Here, we describe methods to use an intramolecular bioluminescent resonance energy transfer (BRET)-based biosensor that reports dynamic signal-dependent changes in PTEN conformational rearrangement and function.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , PTEN Fosfo-Hidrolase/química , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos
15.
Proc Natl Acad Sci U S A ; 112(37): E5160-8, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324936

RESUMO

MAPKs are activated in response to G protein-coupled receptor (GPCR) stimulation and play essential roles in regulating cellular processes downstream of these receptors. However, very little is known about the reciprocal effect of MAPK activation on GPCRs. To investigate possible crosstalk between the MAPK and GPCRs, we assessed the effect of ERK1/2 on the activity of several GPCR family members. We found that ERK1/2 activation leads to a reduction in the steady-state cell-surface expression of many GPCRs because of their intracellular sequestration. This subcellular redistribution resulted in a global dampening of cell responsiveness, as illustrated by reduced ligand-mediated G-protein activation and second-messenger generation as well as blunted GPCR kinases and ß-arrestin recruitment. This ERK1/2-mediated regulatory process was observed for GPCRs that can interact with ß-arrestins, such as type-2 vasopressin, type-1 angiotensin, and CXC type-4 chemokine receptors, but not for the prostaglandin F receptor that cannot interact with ß-arrestin, implicating this scaffolding protein in the receptor's subcellular redistribution. Complementation experiments in mouse embryonic fibroblasts lacking ß-arrestins combined with in vitro kinase assays revealed that ß-arrestin-2 phosphorylation on Ser14 and Thr276 is essential for the ERK1/2-promoted GPCR sequestration. This previously unidentified regulatory mechanism was observed after constitutive activation as well as after receptor tyrosine kinase- or GPCR-mediated activation of ERK1/2, suggesting that it is a central node in the tonic regulation of cell responsiveness to GPCR stimulation, acting both as an effector and a negative regulator.


Assuntos
Arrestinas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Membrana Celular/metabolismo , Citoplasma/metabolismo , Ativação Enzimática , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligantes , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Fosforilação , Ligação Proteica , Receptores de Prostaglandina/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , beta-Arrestina 2 , beta-Arrestinas
16.
Nat Commun ; 5: 4431, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25028204

RESUMO

Tumour suppressor PTEN is a phosphatase that negatively regulates the PI3K/AKT pathway. The ability to directly monitor PTEN conformation and function in a rapid, sensitive manner is a key step towards developing anti-cancer drugs aimed at enhancing or restoring PTEN-dependent pathways. Here we developed an intramolecular bioluminescence resonance energy transfer (BRET)-based biosensor, capable of detecting signal-dependent PTEN conformational changes in live cells. The biosensor retains intrinsic properties of PTEN, enabling structure-function and kinetic analyses. BRET shifts, indicating conformational change, were detected following mutations that disrupt intramolecular PTEN interactions, promoting plasma membrane targeting and also following physiological PTEN activation. Using the biosensor as a reporter, we uncovered PTEN activation by several G protein-coupled receptors, previously unknown as PTEN regulators. Trastuzumab, used to treat ERBB2-overexpressing breast cancers also elicited activation-associated PTEN conformational rearrangement. We propose the biosensor can be used to identify pathways regulating PTEN or molecules that enhance its anti-tumour activity.


Assuntos
Técnicas Biossensoriais/métodos , PTEN Fosfo-Hidrolase/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Immunoblotting , Imunoprecipitação , PTEN Fosfo-Hidrolase/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
17.
J Biol Chem ; 289(27): 19042-52, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24855645

RESUMO

CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of ß-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade.


Assuntos
Fármacos Anti-HIV/farmacologia , Quimiocina CCL5/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Receptores CCR5/metabolismo , Internalização do Vírus/efeitos dos fármacos , Arrestinas/metabolismo , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta-Arrestina 2 , beta-Arrestinas
18.
Blood ; 123(2): 191-202, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24277075

RESUMO

In addition to its well-known effect on migration and homing of hematopoietic stem/progenitor cells (HSPCs), CXCL12 chemokine also exhibits a cell cycle and survival-promoting factor for human CD34(+) HSPCs. CXCR4 was suggested to be responsible for CXCL12-induced biological effects until the recent discovery of its second receptor, CXCR7. Until now, the participation of CXCR7 in CXCL12-induced HSPC cycling and survival is unknown. We show here that CXCL12 was capable of binding CXCR7 despite its scarce expression at CD34(+) cell surface. Blocking CXCR7 inhibited CXCL12-induced Akt activation as well as the percentage of CD34(+) cells in cycle, colony formation, and survival, demonstrating its participation in CXCL12-induced functional effects in HSPCs. At steady state, CXCR7 and ß-arrestin2 co-localized near the plasma membrane of CD34(+) cells. After CXCL12 treatment, ß-arrestin2 translocated to the nucleus, and this required both CXCR7 and CXCR4. Silencing ß-arrestin expression decreased CXCL12-induced Akt activation in CD34(+) cells. Our results demonstrate for the first time the role of CXCR7, complementary to that played by CXCR4, in the control of HSPC cycling, survival, and colony formation induced by CXCL12. We also provide evidence for the involvement of ß-arrestins as signaling hubs downstream of both CXCL12 receptors in primary human HSPCs.


Assuntos
Arrestinas/metabolismo , Ciclo Celular , Quimiocina CXCL12/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR/metabolismo , Antígenos CD34/metabolismo , Sobrevivência Celular , Ensaio de Unidades Formadoras de Colônias , Ativação Enzimática , Humanos , Espaço Intracelular/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , beta-Arrestinas
19.
Handb Exp Pharmacol ; 219: 405-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24292842

RESUMO

Non-visual arrestins were initially appreciated for the roles they play in the negative regulation of G protein-coupled receptors through the processes of desensitisation and endocytosis. The arrestins are also now known as protein scaffolding platforms that act downstream of multiple types of receptors, ensuring relevant transmission of information for an appropriate cellular response. They function as regulatory hubs in several important signalling pathways that are often dysregulated in human cancers. Interestingly, several recent studies have documented changes in expression and localisation of arrestins that occur during cancer progression and that correlate with clinical outcome. Here, we discuss these advances and how changes in expression/localisation may affect functional outputs of arrestins in cancer biology.


Assuntos
Arrestinas/metabolismo , Neoplasias/patologia , Transdução de Sinais , Animais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...