Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(10)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39458611

RESUMO

Carboplatin (Cp) is a potent chemotherapeutic agent, but its effectiveness is constrained by its associated side effects. Frankincense, an oleo-gum resin from the Boswellia sacra tree, has demonstrated cytotoxic activity against cancer cells. This study explored the synergistic potential of nanoparticles formulated from Boswellia sacra methanolic extract (BME), to enhance the therapeutic efficacy of Cp at reduced doses. Nanoparticles were prepared via the nanoprecipitation method, loaded with Cp, and coated with positively charged chitosan (CS) for enhanced cell interaction, yielding Cp@CS/BME NPs with an average size of 160.2 ± 4.6 nm and a zeta potential of 12.7 ± 1.5 mV. In vitro release studies revealed a pH-sensitive release profile, with higher release rates at pH 5.4 than at pH 7.4, highlighting the potential for targeted drug delivery in acidic tumor environments. In vitro studies on HT-29 and Caco-2 colorectal cancer cell lines demonstrated the nanoformulation's ability to significantly increase Cp uptake and cytotoxic activity. Apoptosis assays further confirmed increased induction of cell death with Cp@CS/BME NPs. Cell-cycle analysis revealed that treatment with Cp@CS/BME NPs led to a significant increase in the sub-G1 phase, indicative of enhanced apoptosis, and a marked decrease in the G1-phase population coupled with an increased G2/M-phase arrest in both cell lines. Further gene expression analysis demonstrated a substantial downregulation of the anti-apoptotic gene Bcl-2 and an upregulation of the pro-apoptotic genes Bax, PUMA, and BID following treatment with Cp@CS/BME NPs. Thus, this study presents a promising and innovative strategy for enhancing the therapeutic efficacy of chemotherapeutic agents using naturally derived ingredients while limiting the side effects.

2.
Artif Cells Nanomed Biotechnol ; 52(1): 529-550, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39462870

RESUMO

Lens culinaris L., has been widely recognized for its medical applications. LC-ESI-TOF-MS identified 22 secondary metabolites including phenolics, flavonoids, and anthocyanidin glycosides among its total extract (LCTE). The study aimed to apply LCTE as a biogenic material for reducing and capping the silver nanoparticles (LC-AgNPs). The ynthesized LC-AgNPs were characterized using different techniques. The UV absorption was observed at λmax 379 nm. LC-AgNPs were spherical, with 19.22 nm average size. The face cubic centre nature was demonstrated by HR-TEM and XRD. The LC-AgNPs were then evaluated for their anticancer and antimicrobial potentials. LC-AgNPs showed an extremely potent cytotoxic activity against MCF-7, HCT-116 and HepG2 cell lines (IC50= 0.37, 0.35 and 0.1 µg/mL, respectively). LC-AgNPs induced significant apoptotic effects in the three examined cancer cell lines. LC-AgNPs resulted in sequestration of cells in G1 phase of the cell cycle in both MCF-7 and HCT-116 cells, meanwhile it trapped cells at the G2 phase in HepG2 cells. Moreover, the antimicrobial activity of LC-AgNPs was highly confirmed against Klebsiella pneumoniae and Acinetobacter baumannii. Molecular docking study designated Kaempferol-3-O-robinoside-7-O-rhamnoside and Quercetin-3-D-xyloside as the topmost LCTE active constituents that caused inhibition of both Bcl-2 and IspC cancer targets in combination with the produced silver nanoparticles.


Assuntos
Antineoplásicos , Flavonoides , Química Verde , Nanopartículas Metálicas , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2 , Prata , Humanos , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Células Hep G2 , Células MCF-7 , Células HCT116 , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química
3.
Nanoscale Adv ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39309515

RESUMO

Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers. Dysregulation of miR-34 has been observed in several human cancers, and it is recognized as a tumor suppressor microRNA due to its synergistic interaction with the well-established tumor suppressor p53. However, challenges have arisen with the therapeutic application of miR-34a. These include its susceptibility to degradation by RNase in serum, limiting its ability to penetrate capillary endothelium and reach target cells, as well as reports of immunoreactive adverse reactions. Furthermore, unexpected side effects may occur, such as the accumulation of therapeutic miRNAs in healthy tissues due to interactions with serum proteins on nano-vector surfaces, nanoparticle breakdown in the bloodstream due to shearing stress, and unsuccessful extravasation of nanocarriers to target cells owing to interstitial fluid pressure. Despite these challenges, miR-34a remains a promising candidate for cancer therapy, and other members of the miR-34 family have also shown potential in inhibiting tumor cell proliferation. While the in vivo applications of miR-34b/c are limited, they warrant further exploration for oncotherapy. Recently, procedures utilizing nanoparticles have been developed to address the challenges associated with the clinical use of miR-34, demonstrating efficacy both in vitro and in vivo. This review highlights emerging trends in nanodelivery systems for miR-34 targeting cancer cells, offering insights into novel nanoformulations designed to enhance the anticancer therapeutic activity and targeting precision of miR-34. As far as current knowledge extends, no similar recent review comprehensively addresses the diverse nanoformulations aimed at optimizing the therapeutic potential of miR-34 in anticancer strategies.

4.
Molecules ; 29(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38999074

RESUMO

This study presents properties of hydroethanolic extracts prepared from Pinot Noir (PN) grape pomace through conventional, ultrasound-assisted or solvothermal extraction. The components of the extracts were identified by HPLC. The total content of polyphenols, flavonoids, anthocyanins, and condensed tannins, as well as antioxidant activity and α-glucosidase inhibitory activity of extracts were evaluated using UV-vis spectroscopy. All extracts were rich in phenolic compounds, proving a good radical scavenging activity. The extract obtained by conventional extraction at 80 °C showed the best α-glucosidase inhibitory activity close to that of (-)-epigallocatechin gallate. To improve the chemical stability of polyphenols, the chosen extract was incorporated in porous silica-based supports: amine functionalized silica (MCM-NH2), fucoidan-coated amine functionalized silica (MCM-NH2-Fuc), MCM-41, and diatomite. The PN extract exhibited moderate activity against Gram-positive S. aureus (MIC = 156.25 µg/mL) better than against Gram-negative E. coli (MIC = 312.5 µg/mL). The biocompatibility of PN extract, free and incorporated in MCM-NH2 and MCM-NH2-Fuc, was assessed on RAW 264.7 mouse macrophage cells, and the samples showcased a good cytocompatibility at 10 µg/mL concentration. At this concentration, PN and PN@MCM-NH2-Fuc reduced the inflammation by inhibiting NO production. The anti-inflammatory potential against COX and LOX enzymes of selected samples was evaluated and compared with that of Indomethacin and Zileuton, respectively. The best anti-inflammatory activity was observed when PN extract was loaded on MCM-NH2-Fuc support.


Assuntos
Anti-Inflamatórios , Antioxidantes , Hipoglicemiantes , Extratos Vegetais , Dióxido de Silício , Vitis , Vitis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Animais , Camundongos , Dióxido de Silício/química , Células RAW 264.7 , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Porosidade , Polifenóis/farmacologia , Polifenóis/química
5.
RSC Adv ; 14(12): 8583-8601, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38487521

RESUMO

Combining sonochemistry with phytochemistry is a modern trend in the biosynthesis of metallic nanoparticles (NPs), which contributes to the sustainability of chemical processes and minimizes hazardous effects. Herein, titanium dioxide (TiO2) NPs were bioengineered using a novel and facile ultrasound-assisted approach utilizing the greenly extracted essential oil of Ocimum basilicum. FTIR and UV-Vis spectrophotometry were used to confirm the formation of TiO2 NPs. The X-ray diffraction (XRD) analysis showed the crystalline nature of TiO2 NPs. TEM analysis revealed the spherical morphology of the NPs with sizes ranging from 5.55 to 13.89 nm. Energy-dispersive X-ray (EDX) confirmed the purity of the greenly synthesized NPs. TiO2 NPs demonstrated outstanding antitumor activity against breast (MCF-7) and lung (A-549) cancer cells with estimated IC50 values of 1.73 and 4.79 µg mL-1. The TiO2 NPs were cytocompatible to normal cells (MCF-10A) with a selectivity index (SI) of 8.77 for breast and 3.17 for lung cancer. Biological assays revealed a promising potential for TiO2 NPs to induce apoptosis and arrest cells at the sub-G1 phase of the cell cycle phase in both cancer cell lines. Molecular investigations showed the ability of TiO2 NPs to increase apoptotic genes' expression (Bak and Bax) and their profound ability to elevate the expression of apoptotic proteins (caspases 3 and 7). Molecular docking demonstrated strong binding interactions for TiO2 NPs with caspase 3 and EGFR-TK targets. In conclusion, the greenly synthesized TiO2 NPs exhibited potent antitumor activity and mitochondrion-based cell death against breast and lung cancer cell lines while maintaining cytocompatibility against normal cells.

6.
RSC Adv ; 14(7): 4666-4691, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38318629

RESUMO

Despite the advancements in cancer therapies during the past few years, chemo/photo resistance, severe toxic effects, recurrence of metastatic tumors, and non-selective targeting remain incomprehensible. Thus, much effort has been spent exploring natural anticancer compounds endowed with biosafety and high effectiveness in cancer prevention and therapy. Gambogic acid (GA) is a promising natural compound in cancer therapy. It is the major xanthone component of the dry resin extracted from the Garcinia hanburyi Hook. f. tree. GA has significant antiproliferative effects on different types of cancer, and it exerts its anticancer activities through various pathways. Nonetheless, the clinical translation of GA has been hampered, partly due to its water insolubility, low bioavailability, poor pharmacokinetics, rapid plasma clearance, early degradation in blood circulation, and detrimental vascular irritation. Lately, procedures have been invented demonstrating the ability of nanoparticles to overcome the challenges associated with the clinical use of natural compounds both in vitro and in vivo. This review sheds light on the recent emerging trends for the nanodelivery of GA to cancer cells. To the best of our knowledge, no similar recent review described the different nanoformulations designed to improve the anticancer therapeutic activity and targeting ability of GA.

7.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397847

RESUMO

Polyphenolic extracts from wild bilberries (Vaccinium myrtillus L.) have shown antioxidant and anti-inflammatory effects, but they are prone to degradation when exposed to environmental factors, limiting their use in biomedical applications. To overcome this issue, this study proposed the embedding of wild bilberry fruit ethanolic extracts in pristine mesoporous silica functionalized with organic groups (mercaptopropyl and propionic acid), as well as coated with fucoidan, a biopolymer. Herein, we report a stability study of free and incorporated extracts in mesoporous silica-type supports in high-humidity atmospheres at 40 °C up to 28 days, using HPLC analysis, thermal analysis, and radical scavenging activity determination. Better chemical and thermal stability over time was observed when the extracts were incorporated in mesoporous silica-type supports. After 12 months of storage, higher values of antioxidant activity were determined for the extract embedded in the supports, silica modified with mercaptopropyl groups (MCM-SH), and fucoidan-coated silica (MCM-SH-Fuc) than that of the free extract due to a synergistic activity between the support and extract. All encapsulated extracts demonstrated remarkable effects in reducing NO production in LPS-stimulated RAW 264.7 cells. The treatment with extract embedded in MCM-SH-Fuc in a dose of 10 µg/mL surpassed the effect of free extract in the same concentration. For the extract encapsulated in an MCM-SH support, a lower IC50 value (0.69 µg/mL) towards COX-2 was obtained, comparable with that of Indomethacin (0.6 µg/mL). Also, this sample showed a higher selectivity index (2.71) for COX-2 than the reference anti-inflammatory drug (0.98). The developed formulations with antioxidant and anti-inflammatory properties could be further used in nutraceuticals.

8.
RSC Adv ; 14(6): 4005-4024, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38288146

RESUMO

In the current study, we biosynthesized copper oxide NPs (CuO NPs) utilizing the essential oils extracted from Boswellia carterii oleogum resin, which served as a bioreductant and capping agent with the help of microwave energy. Afterwards, the platinum(ii) based anticancer drug, carboplatin (Cr), was loaded onto the CuO NPs, exploiting the electrostatic interactions forming Cr@CuO NPs. The produced biogenic NPs were then characterized using zeta potential (ZP), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), and Fourier transform infrared spectroscopy (FTIR) techniques. In addition, the entrapment efficiency and release profile of the loaded Cr were evaluated. Thereafter, SRB assay was performed, where Cr@CuO NPs demonstrated the highest cytotoxic activity against human colon cancer cells (HCT-116) with an IC50 of 5.17 µg mL-1, which was about 1.6 and 2.2 folds more than that of Cr and CuO NPs. Moreover, the greenly synthesized nanoparticles (Cr@CuO NPs) displayed a satisfactory selectivity index (SI = 6.82), which was far better than the free Cr treatment (SI = 2.23). Regarding the apoptosis assay, the advent of Cr@CuO NPs resulted in an immense increase in the cellular population percentage of HCT-116 cells undergoing both early (16.02%) and late apoptosis (35.66%), significantly surpassing free Cr and CuO NPs. A study of HCT-116 cell cycle kinetics revealed the powerful ability of Cr@CuO NPs to trap cells in the Sub-G1 and G2 phases and impede the G2/M transition. RT-qPCR was utilized for molecular investigations of the pro-apoptotic (Bax and p53) and antiapoptotic genes (Bcl-2). The novel Cr@CuO NPs treatment rose above single Cr or CuO NPs therapy in stimulating the p53-Bax mediated mitochondrial apoptosis. The cellular and molecular biology investigations presented substantial proof of the potentiated anticancer activity of Cr@CuO NPs and the extra benefits that could be obtained from their use.

9.
ACS Omega ; 8(44): 41485-41494, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37969975

RESUMO

The current study investigates the anticancer effects of PEGylated chitosan nanoparticles (CS NPs) coloaded with betaine (BT) and nedaplatin (ND) on breast adenocarcinoma (MCF-7) cells and breast cancer-bearing rats. Hereof, the ionotropic gelation approach was implemented for the synthesis of PEG-uncoated and PEG-coated CS NPs encompassing either BT, ND, or both (BT-ND). The sizes of the developed BT/CS NPs, ND/CS NPs, and BT-ND/CS NPs were 176.84 ± 7.45, 204.1 ± 13.6, and 201.1 ± 23.35 nm, respectively. Meanwhile, the sizes of the synthesized BT/PEG-CS NPs, ND/PEG-CS NPs, and BT-ND/PEG-CS NPs were 165.1 ± 32.40, 148.2 ± 20.98, and 143.7 ± 7.72 nm, respectively. The surface charges of the fabricated nanoparticles were considerably high. All of the synthesized nanoparticles displayed a spherical form and significant entrapment efficiency. Release experiments demonstrated that the PEGylated and non-PEGylated CS NPs could discharge their contents into the tumor cells' microenvironments (pH 5.5). In addition, the NPs demonstrated an outstanding ability to reduce the viability of the MCF-7 cell line. In addition, BT-ND/PEG-CS NPs were found to be the strongest among all NP preparations, where they caused around 90% decrease in the size of mammary gland tumors in rats compared to vehicle-treated animals.

10.
Pharmaceutics ; 15(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896127

RESUMO

Currently, the main pillars in treating breast cancer involve tumorectomy pursued by hormonal, radio, or chemotherapies. Nonetheless, these approaches exhibit severe adverse effects and might suffer from tumor recurrence. Therefore, there is a considerable demand to fabricate an innovative controlled-release nano-delivery system to be implanted after tumor surgical removal to guard against cancer recurrence. In addition, combining platinum-based drugs with phytochemicals is a promising approach to improving the anticancer activity of the chemotherapeutics against tumor cells while minimizing their systemic effects. This study designed polycaprolactone (PCL)-based electrospun nanofiber mats encapsulating nedaplatin (N) and Peganum harmala alkaloid-rich fraction (L). In addition to physicochemical characterization, including average diameters, morphological features, degradation study, thermal stability, and release kinetics study, the formulated nanofibers were assessed in terms of cytotoxicity, where they demonstrated potentiated effects and higher selectivity towards breast cancer cells. The dual-loaded nanofiber mats (N + L@PCL) demonstrated the highest antiproliferative effects against MCF-7 cells with a recorded IC50 of 3.21 µg/mL, as well as the topmost achieved selectivity index (20.45) towards cancer cells amongst all the tested agents (N, L, N@PCL, and L@PCL). This indicates that the dual-loaded nanofiber excelled at conserving the normal breast epithelial cells (MCF-10A). The combined therapy, N + L@PCL treatment, resulted in a significantly higher percent cell population in the late apoptosis and necrosis quartiles as compared to all other treatment groups (p-value of ≤0.001). Moreover, this study of cell cycle kinetics revealed potentiated effects of the dual-loaded nanofiber (N + L@PCL) at trapping more than 90% of cells in the sub-G1 phase and reducing the number of cells undergoing DNA synthesis in the S-phase by 15-fold as compared to nontreated cells; hence, causing cessation of the cell cycle and confirming the apoptosis assay results. As such, our findings suggest the potential use of the designed nanofiber mats as perfect implants to prevent tumor recurrence after tumorectomy.

11.
RSC Adv ; 13(37): 26213-26228, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37671007

RESUMO

In this study, Retama monosperma extract (RME) was used for the green synthesis of silver nanoparticles (RME-AgNPs). RME's phenolic profile was identified by liquid chromatography coupled to mass spectroscopy (LC-ESI/MS/MS) technique. A tentative identification of 21 phenolic metabolites from the extract was performed. The produced RME-AgNPs showed UV absorbance at 443 nm. FTIR spectroscopy confirmed the presence of RME functional groups. In addition, XRD analysis confirmed the crystallography of RME-AgNPs via exhibiting peaks with 2θ values at 38.34°, 44.29°, and 64.65°. RME-AgNPs were spherical with particle sizes ranging from 9.87 to 21.16 nm, as determined by SEM and HR-TEM techniques. The zeta potential determined the particle's charge value as -15.25 mv. RME-AgNPs exhibited significantly higher antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, and Klebsiella pneumoniae) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) compared to RME. Moreover, the SEM images of green-synthesized nanoparticles revealed severe damage and deformation in the bacterial cell wall of the different strains subjected to the current investigation. The bioinformatics study identified 266 targets, among which only 41 targets were associated with bacterial infections. The PI3K-Akt and Relaxin signaling pathways were the top KEGG signaling pathways. Molecular docking was also performed for the 21 identified compounds at the TNF-α active site; kaempferol-3-O-robinoside-7-O-rhamnoside had a higher binding energy (-6.8084). The findings of this study warrant the use of green-synthesized AgNPs from Retama monosperma as potential antibacterial agents.

12.
Nanoscale Adv ; 5(19): 5399-5413, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37767043

RESUMO

Herein, thermo-responsive liposomes (TLs) loaded with Asp (Asp/TLs) were produced by self-assembling DPPC, DSPE-PEG2000, and cholesterol. The preparation variables were optimized using the Box-Behnken design (BBD). The optimized Asp/TLs exhibited an average particle size of 114.05 ± 1.56 nm, PDI of 0.15 ± 0.015, zeta potential of -15.24 ± 0.65 mV, and entrapment efficiency (EE%) of 84.08 ± 2.75%. In addition, under physiological conditions, Asp/TLs showed spherical shape, outstanding stability and thermo-triggered the release of Asp at 38 °C, reaching the maximum Asp release at 40 °C. The MTT assay showed that the optimal Asp/TLs exhibited the highest cytotoxic activity upon exposure to mild hyperthermia (40 °C) against the invasive triple-negative breast cancer cell line (MDA-MB-231) when compared to other preparations. The IC50 of Asp/TLs (40 °C) was estimated at 0.9 µg mL-1, while that of free Asp (40 °C) was 3.83 µg mL-1. As such, the optimal Asp/TLs were shown to increase the cytotoxic activity of Asp by 4-fold upon exposure to mild hyperthermia. The IC50 values of Asp and Asp/TLs without exposure to 40 °C were 6.6 µg mL-1 and 186 µg mL-1, respectively. This indicated that Asp was released only when placed at 40 °C. The apoptosis assay revealed that Asp/TLs (40 °C) caused a remarkable increase in the percentage of cell population among both the late apoptosis and necrosis quartiles, as well as a significant decline in the viable cell quartile (P ≤ 0.001) when compared to Asp (40 °C). Asp/TLs (40 °C) and Asp (40 °C) could stimulate the intrinsic apoptosis pathway by upregulating the apoptotic genes Bak and Bax, while downregulating the anti-apoptotic genes, BCL-xL and BCL-2. The free Asp (40 °C) increased the gene expression of Bak and Bax by 4.4- and 5.2-folds, while reducing the expression of BCL-xL and BCL-2 by 50% and 73%, respectively. The optimal Asp TLs (40 °C) manifested more potent effects as demonstrated by the upregulation of Bak, Bax, and P53 by 5.6-, 7.2-, and 1.3-folds, as well as the downregulation of BCL-xL and BCL-2 by 70% and 85%, respectively. As such, the optimal Asp TLs (40 °C) treatment displayed the most potent cytotoxic profile and induced both apoptosis and necrosis in MDA-MB-231.

13.
Sci Rep ; 13(1): 11346, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443185

RESUMO

In the current study, we designed and synthesized a series of new quinoline derivatives 10a-p as antiproliferative agents targeting cancer through inhibition of VEGFR-2. Preliminary molecular docking to assess the interactions of the designed derivatives with the binding site of VEGFR-2 (PDB code: 4ASD) displayed binding poses and interactions comparable to sorafenib. The synthesized compounds exhibited VEGFR-2 inhibitory activity with IC50 ranging from 36 nM to 2.23 µM compared to sorafenib (IC50 = 45 nM), where derivative 10i was the most potent. Additionally, the synthesized derivatives were evaluated in vitro for their cytotoxic activity against HepG2 cancer cell line. Seven compounds 10a, 10c, 10d, 10e, 10i, 10n and 10o (IC50 = 4.60, 4.14, 1.07, 0.88, 1.60, 2.88 and 2.76 µM respectively) displayed better antiproliferative activity than sorafenib (IC50 = 8.38 µM). Compound 10i was tested against Transformed Human Liver Epithelial-2 normal cell line (THLE-2) to evaluate its selective cytotoxicity. Furthermore, 10i, as a potent representative of the series, was assayed for its apoptotic activity and cell cycle kinetics' influence on HepG2, its effects on the gene expression of VEGFR-2, and protein expression of the apoptotic markers Caspase-7 and Bax. Compound 10i proved to have a potential role in apoptosis by causing significant increase in the early and late apoptotic quartiles, a remarkable activity in elevating the relative protein expression of Bax and Caspase-7 and a significant reduction of VEGFR-2 gene expression. Collectively, the obtained results indicate that compound 10i has a promising potential as a lead compound for the development of new anticancer agents.


Assuntos
Antineoplásicos , Quinolonas , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Caspase 7/metabolismo , Sorafenibe/farmacologia , Quinolonas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Proteína X Associada a bcl-2 , Inibidores de Proteínas Quinases/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Proliferação de Células , Desenho de Fármacos
14.
Sci Rep ; 13(1): 7676, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169776

RESUMO

This study evaluated the topical effect of Lepidium sativum lyophilized seed extract (LSLE) towards Sustanon-induced alopecia in male adult Wistar albino rats in vivo, compared to minoxidil topical reference standard drug (MRD). LC-MS/MS together with molecular networking was used to profile the metabolites of LSLE. LSLE treated group revealed significant changes in alopecia related biomarkers, perturbation of androgenic markers; decline in testosterone level and elevation in 5α-reductase (5-AR); decline in the cholesterol level. On the other hand, LSLE treated group showed improvement in vascular markers; CTGF, FGF and VEGF. Groups treated topically with minoxidil and LSLE showed significant improvement in hair length. LC-MS/MS profile of LSLE tentatively identified 17 constituents: mainly glucosinolates, flavonoid glycosides, alkaloids and phenolic acids. The results point to the potential role of LSLE in the treatment of alopecia through decreasing 5(alpha)-dihydrotestosterone levels. Molecular docking was attempted to evaluate the probable binding mode of identified compounds to androgen receptor (PDB code: 4K7A).


Assuntos
Cabelo , Minoxidil , Animais , Inibidores de 5-alfa Redutase/farmacologia , Alopecia/tratamento farmacológico , Cromatografia Líquida , Lepidium sativum , Minoxidil/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/uso terapêutico , Espectrometria de Massas em Tandem , Ratos
15.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176099

RESUMO

Smart pH-responsive niosomes loaded with either Oxaliplatin (Ox), Ylang ylang essential oil (Y-oil), or co-loaded with both compounds (Ox-Y) (Ox@NSs, Y@NSs, and Ox-Y@NSs, respectively) were formulated utilizing the thin film method. The developed nanocontainers had a spherical morphology with mean particle sizes lower than 170 nm and showed negative surface charges, high entrapment efficiencies, and a pH-dependent release over 24 h. The prepared pH-responsive niosomes' cytotoxicity was tested against the invasive triple-negative breast cancer (MDA-MB-231) cells, compared to free OX and Y-oil. All niosomal formulations loaded with Ox and/or Y-oil significantly improved cytotoxic activity relative to their free counterparts. The Ox-Y@NSs demonstrated the lowest IC50 (0.0002 µg/mL) when compared to Ox@NSs (0.006 µg/mL) and Y@NSs (18.39 µg/mL) or unloaded Ox (0.05 µg/mL) and Y-oil (29.01 µg/mL). In addition, the percentages of the MDA-MB-231 cell population in the late apoptotic and necrotic quartiles were profoundly higher in cells treated with the smart Ox-Y@NSs (8.38% and 5.06%) than those exposed to free Ox (7.33% and 1.93%) or Y-oil (2.3% and 2.13%) treatments. Gene expression analysis and protein assays were performed to provide extra elucidation regarding the molecular mechanism by which the prepared pH-sensitive niosomes induce apoptosis. Ox-Y@NSs significantly induced the gene expression of the apoptotic markers Tp53, Bax, and Caspase-7, while downregulating the antiapoptotic Bcl2. As such, Ox-Y@NSs are shown to activate the intrinsic pathway of apoptosis. Moreover, the protein assay ascertained the apoptotic effects of Ox-Y@NSs, generating a 4-fold increase in the relative protein quantity of the late apoptotic marker Caspase-7. Our findings suggest that combining natural essential oil with synthetic platinum-based drugs in pH-responsive nanovesicles is a promising approach to breast cancer therapy.


Assuntos
Antineoplásicos , Cananga , Óleos Voláteis , Neoplasias de Mama Triplo Negativas , Humanos , Oxaliplatina/farmacologia , Caspase 7 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Lipossomos , Óleos Voláteis/farmacologia , Óleos de Plantas , Antineoplásicos/farmacologia , Concentração de Íons de Hidrogênio
16.
Pharmaceutics ; 14(1)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35057098

RESUMO

Resveratrol, a naturally occurring polyphenol, has attracted significant attention due to its antioxidant, cardioprotective and anticancer potential. However, its low aqueous solubility limits resveratrol bioavailability and use. In this work, different mesoporous silica matrices were used to encapsulate the polyphenol and to increase its dissolution rate. Pristine MCM-41, MCM-48, SBA-15, SBA-16, FDU-12 and MCF silica were obtained. The influence of SBA-15 functionalized with aminopropyl, isocyanate, phenyl, mercaptopropyl, and propionic acid moieties on resveratrol loading and release profiles was also assessed. The cytotoxic effects were evaluated for mesoporous carriers and resveratrol-loaded samples against human lung cancer (A549), breast cancer (MDA-MB-231) and human skin fibroblast (HSF) cell lines. The effect on apoptosis and cell cycle were assayed for selected resveratrol-loaded carriers. The polyphenol molecules are encapsulated only inside the mesopores, mostly in amorphous state. All materials containing either pristine or functionalized silica carriers increased polyphenol dissolution rate. The influence of the physico-chemical properties of the mesoporous carriers and resveratrol-loaded supports on the kinetic parameters was identified. Resv@SBA-15-SH and Resv@SBA-15-NCO samples exhibited the highest anticancer effect against A549 cells (IC50 values were 26.06 and 36.5 µg/mL, respectively) and against MDA-MB-231 (IC50 values were 35.56 and 19.30 µg/mL, respectively), which highlights their potential use against cancer.

17.
Clin Transl Oncol ; 24(7): 1262-1273, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35066777

RESUMO

Solid tumors including skin, lung, breast, colon, and prostate cancers comprise the most diagnosed cancers worldwide. Treatment of such cancers is still challenging specially in the advanced/metastatic setting. The growing understanding of the tumor microenvironment has revolutionized the cancer therapy paradigms. Targeting programmed death-1 (PD-1)/PD-L1 immune checkpoint has been extensively studied over this decade as a new trend in the management of hard-to-treat cancers by harnessing the power of the immune system to eradicate the tumors. Yet, low response rate and resistance were observed when immunotherapies were tested as monotherapy. This urged the need to develop combinatorial regimens of immunotherapy with other immune modulatory agents to enhance its therapeutic potential and help in reverting the resistance. Epigenetic modifiers such as histone deacetylase inhibitors (HDACIs) showed favorable effects on modulating the tumor microenvironment along with the host immune cells. This qualified HDACIs as an attractive candidate class to be tested in combination with immunotherapy. In this review we cover the ongoing clinical trials that investigate the safety and/or the efficacy of HDACI/immunotherapy combinations in solid tumors including skin cancer, prostate cancer, breast cancer, colorectal cancer, lung cancer and recapitulates areas for future research.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Pulmonares , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Terapia de Alvo Molecular , Microambiente Tumoral
18.
Biochem Mol Biol Educ ; 50(2): 193-200, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084793

RESUMO

Nowadays, novel Biochemistry lab techniques are being introduced at a very fast pace in scientific research. This requires development of new labs for undergraduate Biochemistry courses to equip the students with up-to-date techniques. However, the time limit of Biochemistry labs for undergraduate students represents a major obstacle. This article presents a clear set of laboratory exercises designed to introduce students to the use of polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) as a means of detection of genetic variants. Three consecutive lab experiments have been designed for the undergraduate students to serve this purpose. The first session was performed in a computer lab (dry lab) where students were taught how to obtain a specific gene sequence, identify an exact single nucleotide polymorphism location, choose the target sequence for amplification, design specific primers for this particular sequence and choose the most suitable restriction enzyme from web tools. The second and third lab sessions were performed as wet labs where in the second lab session, students optimized PCR conditions and performed a successful PCR. The PCR products were kept for use in the third lab session where they utilized the selected restriction enzyme and carried out gel electrophoresis to determine the exact genotype.


Assuntos
Bioquímica , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Bioquímica/educação , Colestanotriol 26-Mono-Oxigenase , Família 2 do Citocromo P450 , Primers do DNA/química , Humanos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Estudantes
19.
Chem Biol Interact ; 324: 109087, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32294457

RESUMO

Despite advances in cancer treatment modalities, DNA still stands as one of the targets for anticancer agents. DNA minor groove binders (MGBs) represent an important investigational chemotherapeutic class with promising cytotoxic capacity. Herein this study reports the potent cytotoxic effect of a series of repurposed flexible bis-imidamides 1-4, triaryl bis-guanidine 5 and bis-N-substituted guanidines 6,7 having a 1,4-diphenoxybenzene scaffold backbone on MCF-7 and MDA-MB-231 breast cancer cell lines. Of these compounds, imidamide 4 was chosen for further in-vitro, in-vivo and molecular dynamics (MD) studies owing to its promising anti-tumor activity, with IC50 values on MCF-7 and MDA-MB-231 breast cancer cell lines of 1.9 and 2.08 µM, respectively. Annexin V/propidium iodide apoptosis assay revealed apoptosis induction on imidamide 4 treated MCF-7 cells. RT-PCR assay results demonstrated the proapoptotic effect of compound 4 through increase of mRNA levels of the pro-apoptotic genes; p53, PUMA, and Bax, and inhibiting the anti-apoptotic Bcl-2 gene expression in MCF-7 cells. Moreover, compound 4 induced a G0/G1 cell-cycle arrest in MCF-7 in a dose-dependent manner. Corroborating in-vivo experiments on Ehrlich ascites carcinoma (EAC)-bearing mice, reflected the anticancer strength of derivative 4. For further target validation, molecular dynamics (MD) studies demonstrated an energetically favorable binding of imidamide 4 with the DNA minor groove AT rich site. In effect, imidamide 4 can be viewed as a promising hit dicationic compound with good cytotoxic and apoptotic inducing activity against breast cancer that can be adopted for future optimization.


Assuntos
Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , DNA/metabolismo , Guanidinas/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Carcinoma de Ehrlich/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Guanidinas/química , Guanidinas/metabolismo , Humanos , Fígado/patologia , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
20.
Future Med Chem ; 11(7): 659-676, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958028

RESUMO

A series of new visnagin and benzofuran scaffold-based molecules was designed and synthesized as anti-inflammatory and analgesic agents. Biological screening of these compounds showed that they exhibit potent anti-inflammatory/analgesic activity with a safer side effect profile in in vivo mouse models. In vitro cyclooxygenase (COX) inhibition assay showed that the compounds elicit their function through selective COX-2 inhibition. Molecular docking study also revealed the ability of the compounds to correctly recognize the active site and achieve noncovalent binding interactions with key residues therein. The best combined profile of anti-inflammatory, analgesic and COX-2 selective inhibition properties in association with low gastrotoxicity was displayed by the analogs 8, 11b and 19d, which can be considered as promising leads for further future optimization.


Assuntos
Analgésicos/química , Anti-Inflamatórios não Esteroides/química , Benzofuranos/química , Inibidores de Ciclo-Oxigenase 2/química , Quelina/química , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Benzofuranos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Absorção Gástrica , Humanos , Quelina/farmacologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...