Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6636): eadf0602, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893252

RESUMO

Pinson et al. (1) concluded that the modern human TKTL1 gene is responsible for an increased number of cortical neurons. We show that the "putative Neanderthal variant" of TKTL1 is present in modern human backgrounds. We dispute their argument that this genetic variant is responsible for brain differences in modern humans as opposed to Neanderthals.


Assuntos
Homem de Neandertal , Neocórtex , Transcetolase , Animais , Humanos , Homem de Neandertal/genética , Neocórtex/crescimento & desenvolvimento , Neurogênese/genética
2.
J Comp Neurol ; 530(17): 2940-2953, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35929189

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease that is ultimately fatal. Currently, millions of Americans are living with AD, and this number is predicted to grow with increases in the aging population. Interestingly, despite the prevalence of AD in human populations, the full AD phenotype has not been observed in any nonhuman primate (NHP) species, and it has been suggested that NHPs are immune to neurodegenerative diseases such as AD. Here, we review the typical age-related changes and pathologies in humans along with the neuropathologic changes associated with AD, and we place this information in the context of the comparative neuropathology of NHPs. We further propose the use of induced pluripotent stem cell technology as a way of addressing initial molecular processes and changes that occur in neurons and glia (in both humans and NHPs) when exposed to AD-inducing pathology prior to cell death.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Idoso , Envelhecimento/patologia , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Humanos , Doenças Neurodegenerativas/patologia , Primatas
3.
Science ; 371(6530)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33574182

RESUMO

The evolutionarily conserved splicing regulator neuro-oncological ventral antigen 1 (NOVA1) plays a key role in neural development and function. NOVA1 also includes a protein-coding difference between the modern human genome and Neanderthal and Denisovan genomes. To investigate the functional importance of an amino acid change in humans, we reintroduced the archaic allele into human induced pluripotent cells using genome editing and then followed their neural development through cortical organoids. This modification promoted slower development and higher surface complexity in cortical organoids with the archaic version of NOVA1 Moreover, levels of synaptic markers and synaptic protein coassociations correlated with altered electrophysiological properties in organoids expressing the archaic variant. Our results suggest that the human-specific substitution in NOVA1, which is exclusive to modern humans since divergence from Neanderthals, may have had functional consequences for our species' evolution.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Homem de Neandertal/genética , Neurônios/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Evolução Biológica , Sistemas CRISPR-Cas , Proliferação de Células , Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Genoma , Genoma Humano , Haplótipos , Hominidae/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Antígeno Neuro-Oncológico Ventral , Organoides , Sinapses/fisiologia
4.
Brain Struct Funct ; 225(3): 1019-1032, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32189114

RESUMO

Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the hemideletion of approximately 25-28 genes at 7q11.23. Its unusual social and cognitive phenotype is most strikingly characterized by the disinhibition of social behavior, in addition to reduced global IQ, with a relative sparing of language ability. Hypersociality and increased social approach behavior in WS may represent a unique inability to inhibit responses to specific social stimuli, which is likely associated with abnormalities of frontostriatal circuitry. The striatum is characterized by a diversity of interneuron subtypes, including inhibitory parvalbumin-positive interneurons (PV+) and excitatory cholinergic interneurons (Ch+). Animal model research has identified an important role for these specialized cells in regulating social approach behavior. Previous research in humans identified a depletion of interneuron subtypes associated with neuropsychiatric disorders. Here, we examined the density of PV+ and Ch+ interneurons in the striatum of 13 WS and neurotypical (NT) subjects. We found a significant reduction in the density of Ch+ interneurons in the medial caudate nucleus and nucleus accumbens, important regions receiving cortical afferents from the orbitofrontal and ventromedial prefrontal cortex, and circuitry involved in language and reward systems. No significant difference in the distribution of PV+ interneurons was found. The pattern of decreased Ch+ interneuron densities in WS differs from patterns of interneuron depletion found in other disorders.


Assuntos
Neurônios Colinérgicos/patologia , Corpo Estriado/patologia , Interneurônios/patologia , Síndrome de Williams/patologia , Adolescente , Adulto , Idoso , Colina O-Acetiltransferase/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Parvalbuminas/análise , Adulto Jovem
5.
Prog Brain Res ; 250: 109-127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31703898

RESUMO

The prefrontal cortex consists of several cytoarchitectonically defined areas that are involved in higher-order cognitive and emotional processing. The areas are highly variable in terms of organization of cortical layers and distribution of specific neuronal classes, and are affected in neurodevelopmental and psychiatric disorders. Here the focus is on microstructural anatomical characteristics of human prefrontal cortex in an evolutionary context with special emphasis on Williams syndrome. We include a pilot analysis of distribution of neurons labeled with an antibody to non-phosphorylated neurofilament protein (SMI-32) in the frontal pole of Williams syndrome to further examine microstructural characteristics of the prefrontal cortex in Williams syndrome and implications of the distribution of SMI-32 immunoreactive neurons for connectivity between the frontal pole and other cortical areas in the disorder.


Assuntos
Evolução Biológica , Rede Nervosa/anatomia & histologia , Transtornos do Neurodesenvolvimento/patologia , Córtex Pré-Frontal/anatomia & histologia , Síndrome de Williams/patologia , Humanos , Rede Nervosa/citologia , Rede Nervosa/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/patologia
6.
Perspect Biol Med ; 62(2): 216-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281119

RESUMO

Wisdom has been discussed for centuries in religious and philosophical texts. It is often viewed as a fuzzy psychological construct analogous to consciousness, stress, and resilience. This essay provides an understanding of wisdom as a scientific construct, based on empirical research starting in the 1970s. The focus is on practical rather than theoretical wisdom. While there are different conceptualizations of wisdom, it is best defined as a complex human characteristic or trait with specific components: social decision-making, emotional regulation, prosocial behavior (such as empathy and compassion), self-reflection, acceptance of uncertainty, decisiveness, and spirituality. These psychological processes involve the fronto-limbic circuitry. Wisdom is associated with positive life outcomes including better health, well-being, happiness, life satisfaction, and resilience. Wisdom tends to increase with active aging, facilitating a contribution of wise grandparents to promoting fitness of younger kin. Despite the loss of their own fertility and physical health, older adults help enhance their children's and grandchildren's well-being, health, longevity, and fertility-the "grandmother hypothesis" of wisdom. Wisdom has important implications at individual and societal levels and is a major contributor to human thriving. We need to place a greater emphasis on promoting wisdom through our educational systems from elementary to professional schools.


Assuntos
Envelhecimento , Tomada de Decisões , Empatia , Família , Idoso de 80 Anos ou mais , Evolução Biológica , Encéfalo/fisiologia , Cultura , Demência Frontotemporal/fisiopatologia , Demência Frontotemporal/psicologia , Genoma Humano , Humanos , Psicologia Social/métodos , Suicídio/estatística & dados numéricos
7.
Am J Phys Anthropol ; 170(3): 351-360, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31260092

RESUMO

OBJECTIVES: The serotonergic system is involved in the regulation of socio-emotional behavior and heavily innervates the amygdala, a key structure of social brain circuitry. We quantified serotonergic axon density of the four major nuclei of the amygdala in humans, and examined our results in light of previously published data sets in chimpanzees and bonobos. MATERIALS AND METHODS: Formalin-fixed postmortem tissue sections of the amygdala from six humans were stained for serotonin transporter (SERT) utilizing immunohistochemistry. SERT-immunoreactive (ir) axon fiber density in the lateral, basal, accessory basal, and central nuclei of the amygdala was quantified using unbiased stereology. Nonparametric statistical analyses were employed to examine differences in SERT-ir axon density between amygdaloid nuclei within humans, as well as differences between humans and previously published data in chimpanzees and bonobos. RESULTS: Humans displayed a unique pattern of serotonergic innervation of the amygdala, and SERT-ir axon density was significantly greater in the central nucleus compared to the lateral nucleus. SERT-ir axon density was significantly greater in humans compared to chimpanzees in the basal, accessory basal, and central nuclei. SERT-ir axon density was greater in humans compared to bonobos in the accessory basal and central nuclei. CONCLUSIONS: The human pattern of SERT-ir axon distribution in the amygdala complements the redistribution of neurons in the amygdala in human evolution. The present findings suggest that differential serotonergic modulation of cognitive and autonomic pathways in the amygdala in humans, bonobos, and chimpanzees may contribute to species-level differences in social behavior.


Assuntos
Tonsila do Cerebelo/química , Tonsila do Cerebelo/citologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/análise , Adulto , Idoso , Antropologia Física , Evolução Biológica , Feminino , Humanos , Imuno-Histoquímica , Masculino , Neurônios/química , Neurônios/citologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Comportamento Social , Adulto Jovem
8.
Elife ; 82019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30730291

RESUMO

Comparative analyses of neuronal phenotypes in closely related species can shed light on neuronal changes occurring during evolution. The study of post-mortem brains of nonhuman primates (NHPs) has been limited and often does not recapitulate important species-specific developmental hallmarks. We utilize induced pluripotent stem cell (iPSC) technology to investigate the development of cortical pyramidal neurons following migration and maturation of cells grafted in the developing mouse cortex. Our results show differential migration patterns in human neural progenitor cells compared to those of chimpanzees and bonobos both in vitro and in vivo, suggesting heterochronic changes in human neurons. The strategy proposed here lays the groundwork for further comparative analyses between humans and NHPs and opens new avenues for understanding the differences in the neural underpinnings of cognition and neurological disease susceptibility between species.


Assuntos
Neurônios/citologia , Pan paniscus/fisiologia , Pan troglodytes/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular/genética , Dendritos/metabolismo , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Especificidade da Espécie
9.
Brain Sci ; 8(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501059

RESUMO

Williams Syndrome (WS) is a neurodevelopmental disorder caused by a deletion of 25⁻28 genes on chromosome 7 and characterized by a specific behavioral phenotype, which includes hypersociability and anxiety. Here, we examined the density of neurons and glia in fourteen human brains in Brodmann area 25 (BA 25), in the ventromedial prefrontal cortex (vmPFC), using a postmortem sample of five adult and two infant WS brains and seven age-, sex- and hemisphere-matched typically developing control (TD) brains. We found decreased neuron density, which reached statistical significance in the supragranular layers, and increased glia density and glia to neuron ratio, which reached statistical significance in both supra- and infragranular layers. Combined with our previous findings in the amygdala, caudate nucleus and frontal pole (BA 10), these results in the vmPFC suggest that abnormalities in frontostriatal and frontoamygdala circuitry may contribute to the anxiety and atypical social behavior observed in WS.

10.
Brain Behav Evol ; 91(1): 45-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29533941

RESUMO

The only direct source of information about hominin brain evolution comes from the fossil record of endocranial casts (endocasts) that reproduce details of the external morphology of the brain imprinted on the walls of the braincase during life. Surface traces of sulci that separate the brain's convolutions (gyri) are reproduced sporadically on early hominin endocasts. Paleoneurologists rely heavily on published descriptions of sulci on brains of great apes, especially chimpanzees (humans' phylogenetically closest living relatives), to guide their identifications of sulci on ape-sized hominin endocasts. However, the few comprehensive descriptions of cortical sulci published for chimpanzees usually relied on post mortem brains, (now) antiquated terminology for some sulci, and photographs or line drawings from limited perspectives (typically right or left lateral views). The shortage of adequate descriptions of chimpanzee sulcal patterns partly explains why the identities of certain sulci on australopithecine endocasts (e.g., the inferior frontal and middle frontal sulci) have been controversial. Here, we provide images of lateral and dorsal surfaces of 16 hemispheres from 4 male and 4 female adult chimpanzee brains that were obtained using in vivo magnetic resonance imaging. Sulci on the exposed surfaces of the frontal, parietal, temporal, and occipital lobes are identified on the images based on their locations, positions relative to each other, and homologies known from comparative studies of cytoarchitecture in primates. These images and sulcal identifications exceed the quantity and quality of previously published illustrations of chimpanzee brains with comprehensively labeled sulci and, thus, provide a larger number of examples for identifying sulci on hominin endocasts than hitherto available. Our findings, even in a small sample like the present one, overturn published claims that australopithecine endocasts reproduce derived configurations of certain sulci in their frontal lobes that never appear on chimpanzee brains. The sulcal patterns in these new images also suggest that changes in two gyri that bridge between the parietal and occipital lobes may have contributed to cortical reorganization in early hominins. It is our hope that these labeled in vivo chimpanzee brains will assist future researchers in identifying sulci on hominin endocasts, which is a necessary first step in the quest to learn how and when the external morphology of the human cerebral cortex evolved from apelike precursors.


Assuntos
Córtex Cerebral/anatomia & histologia , Pan troglodytes/anatomia & histologia , Animais , Evolução Biológica , Córtex Cerebral/diagnóstico por imagem , Feminino , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Especificidade da Espécie
11.
Brain Struct Funct ; 223(4): 1897-1907, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29270815

RESUMO

Perturbations to the amygdala have been observed in neurological disorders characterized by abnormalities in social behavior, such as autism and schizophrenia. Here, we quantitatively examined the amygdala in the postmortem human brains of male and female individuals diagnosed with Williams Syndrome (WS), a neurodevelopmental disorder caused by a well-defined deletion of ~ 26 genes, and accompanied by a consistent behavioral profile that includes profound hypersociability. Using unbiased stereological sampling, we estimated nucleus volume, number of neurons, neuron density, and neuron soma area in four major amygdaloid nuclei- the lateral nucleus, basal nucleus, accessory basal nucleus, and central nucleus- in a sample of five adult and two infant WS brains and seven age-, sex- and hemisphere-matched typically developing control (TD) brains. Boundaries of the four nuclei examined were drawn on Nissl-stained coronal sections as four separate regions of interest for data collection. We found that the lateral nucleus contains significantly more neurons in WS compared to TD. WS and TD do not demonstrate significant differences in neuron number in the basal, accessory basal, or central nuclei, and there are no significant differences between WS and TD in nuclei volume, neuron density, and neuron soma area in any of the four nuclei. A similarly designed study reported a decrease in lateral nucleus neuron number in autism, mirroring the opposing extremes of the two disorders in the social domain. These results suggest that the number of neurons in the lateral nucleus may contribute to pathological disturbances in amygdala function and sociobehavioral phenotype.


Assuntos
Tonsila do Cerebelo/patologia , Diagnóstico , Técnicas Estereotáxicas , Síndrome de Williams/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Neurônios/patologia
12.
Dev Neurobiol ; 78(5): 531-545, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29090517

RESUMO

Williams syndrome (WS) is a rare neurodevelopmental disorder with a well-described, known genetic etiology. In contrast to Autism Spectrum Disorders (ASD), WS has a unique phenotype characterized by global reductions in IQ and visuospatial ability, with relatively preserved language function, enhanced reactivity to social stimuli and music, and an unusual eagerness to interact socially with strangers. A duplication of the deleted region in WS has been implicated in a subset of ASD cases, defining a spectrum of genetic and behavioral variation at this locus defined by these opposite extremes in social behavior. The hypersociability characteristic of WS may be linked to abnormalities of frontostriatal circuitry that manifest as deficits in inhibitory control of behavior. Here, we examined the density of neurons and glia in associative and limbic territories of the striatum including the caudate, putamen, and nucleus accumbens regions in Nissl stained sections in five pairs of age, sex, and hemisphere-matched WS and typically-developing control (TD) subjects. In contrast to what is reported in ASD, no significant increase in overall neuron density was observed in this study. However, we found a significant increase in the density of glia in the dorsal caudate nucleus, and in the ratio of glia to neurons in the dorsal and medial caudate nucleus in WS, accompanied by a significant increase in density of oligodendrocytes in the medial caudate nucleus. These cellular abnormalities may underlie reduced frontostriatal activity observed in WS, with implications for understanding altered connectivity and function in ASD. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 531-545, 2018.


Assuntos
Núcleo Caudado/patologia , Neuroglia/patologia , Síndrome de Williams/patologia , Adolescente , Adulto , Transtorno do Espectro Autista/patologia , Contagem de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Núcleo Accumbens/patologia , Putamen/patologia , Adulto Jovem
13.
Front Neurosci ; 11: 419, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848376

RESUMO

Williams syndrome (WS) is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC)-the frontal pole (Brodmann area 10) and the orbitofrontal cortex (Brodmann area 11)-and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18). The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10) and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other neurodevelopmental disorders. We have proposed hypotheses for further investigations of morphological changes on basal dendrites in WS, a syndrome of particular interest given its unique social and cognitive phenotype.

14.
Autism Res ; 10(1): 99-112, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27520580

RESUMO

Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural and functional abnormalities in WS cortex, including the prefrontal cortex (PFC), a region implicated in social cognition. This study utilizes the Bellugi Williams Syndrome Brain Collection, a unique resource that comprises the largest WS postmortem brain collection in existence, and is the first to quantitatively examine WS PFC cytoarchitecture. We measured neuron density in layers II/III and V/VI of five cortical areas: PFC areas BA 10 and BA 11, primary motor BA 4, primary somatosensory BA 3, and visual area BA 18 in six matched pairs of WS and typically developing (TD) controls. Neuron density in PFC was lower in WS relative to TD, with layers V/VI demonstrating the largest decrease in density, reaching statistical significance in BA 10. In contrast, BA 3 and BA 18 demonstrated a higher density in WS compared to TD, although this difference was not statistically significant. Neuron density in BA 4 was similar in WS and TD. While other cortical areas were altered in WS, prefrontal areas appeared to be most affected. Neuron density is also altered in the PFC of individuals with ASD. Together these findings suggest that the PFC is targeted in neurodevelopmental disorders associated with sociobehavioral alterations. Autism Res 2017, 10: 99-112. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Neurônios/patologia , Córtex Pré-Frontal/patologia , Síndrome de Williams/patologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Microscopia , Pessoa de Meia-Idade , Adulto Jovem
15.
Nature ; 536(7616): 338-43, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27509850

RESUMO

Williams syndrome is a genetic neurodevelopmental disorder characterized by an uncommon hypersociability and a mosaic of retained and compromised linguistic and cognitive abilities. Nearly all clinically diagnosed individuals with Williams syndrome lack precisely the same set of genes, with breakpoints in chromosome band 7q11.23 (refs 1-5). The contribution of specific genes to the neuroanatomical and functional alterations, leading to behavioural pathologies in humans, remains largely unexplored. Here we investigate neural progenitor cells and cortical neurons derived from Williams syndrome and typically developing induced pluripotent stem cells. Neural progenitor cells in Williams syndrome have an increased doubling time and apoptosis compared with typically developing neural progenitor cells. Using an individual with atypical Williams syndrome, we narrowed this cellular phenotype to a single gene candidate, frizzled 9 (FZD9). At the neuronal stage, layer V/VI cortical neurons derived from Williams syndrome were characterized by longer total dendrites, increased numbers of spines and synapses, aberrant calcium oscillation and altered network connectivity. Morphometric alterations observed in neurons from Williams syndrome were validated after Golgi staining of post-mortem layer V/VI cortical neurons. This model of human induced pluripotent stem cells fills the current knowledge gap in the cellular biology of Williams syndrome and could lead to further insights into the molecular mechanism underlying the disorder and the human social brain.


Assuntos
Encéfalo/patologia , Síndrome de Williams/patologia , Adolescente , Adulto , Apoptose , Cálcio/metabolismo , Diferenciação Celular , Forma Celular , Reprogramação Celular , Córtex Cerebral/patologia , Cromossomos Humanos Par 7/genética , Dendritos/patologia , Feminino , Receptores Frizzled/deficiência , Receptores Frizzled/genética , Haploinsuficiência/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Modelos Neurológicos , Células-Tronco Neurais/patologia , Neurônios/patologia , Fenótipo , Reprodutibilidade dos Testes , Sinapses/patologia , Síndrome de Williams/genética , Adulto Jovem
16.
Brain Behav Evol ; 84(2): 135-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247986

RESUMO

The evolution of the human brain has been marked by a nearly 3-fold increase in size since our divergence from the last common ancestor shared with chimpanzees and bonobos. Despite increased interest in comparative neuroanatomy and phylogenetic methods, relatively little is known regarding the effects that this enlargement has had on its internal organization, and how certain areas of the brain have differentially expanded over evolutionary time. Analyses of the microstructure of several regions of the human cortex and subcortical structures have demonstrated subtle changes at the cellular and molecular level, suggesting that the human brain is more than simply a 'scaled-up' primate brain. Ongoing research in comparative neuroanatomy has much to offer regarding our understanding of human brain evolution. Through analysis of the neuroanatomical phenotype at the level of reorganization in cytoarchitecture and cellular morphology, new data continue to highlight changes in cell density and organization associated with volumetric changes in discrete regions. An understanding of the functional significance of variation in neural circuitry can further be approached through studies of atypical human development. Many neurodevelopmental disorders cause disruption in systems associated with uniquely human features of cognition, including language and social cognition. Understanding the genetic and developmental mechanisms that underlie variation in the human cognitive phenotype can help to clarify the functional significance of interspecific variation. By uniting approaches from comparative neuroanatomy and neuropathology, insights can be gained that clarify trends in human evolution. Here, we explore these lines of evidence and their significance for understanding functional variation between species as well as within neuropathological variation in the human brain.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/patologia , Transtornos Mentais/patologia , Malformações do Sistema Nervoso/patologia , Animais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Humanos , Interneurônios/citologia , Interneurônios/patologia , Interneurônios/fisiologia , Transtornos Mentais/fisiopatologia , Malformações do Sistema Nervoso/fisiopatologia , Células Piramidais/citologia , Células Piramidais/patologia , Células Piramidais/fisiologia , Especificidade da Espécie , Síndrome de Williams/genética , Síndrome de Williams/patologia , Síndrome de Williams/fisiopatologia
17.
J Neurosci Methods ; 235: 76-82, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24992573

RESUMO

BACKGROUND: Formalin fixation (FF) is the standard and most common method for preserving postmortem brain tissue. FF stabilizes cellular morphology and tissue architecture, and can be used to study the distinct morphologic and genetic signatures of different cell types. Although the procedure involved in FF degrades messenger RNA over time, an alternative approach is to use small RNAs (sRNAs) for genetic analysis associated with cell morphology. Although genetic analysis is carried out on fresh or frozen tissue, there is limited availability or impossibility on targeting specific cell populations, respectively. NEW METHOD: The goal of this study is to detect miRNA and other classes of sRNA stored in formalin or in paraffin embedded for over decades. Two brain samples, one formed by a mixed population of cortical and subcortical cells, and one formed by pyramidal shaped cells collected by laser-capture microdissection, were subjected to sRNA sequencing. RESULTS: Performing bioinformatics analysis over the sequenced sRNA from brain tissue, we detected several classes of sRNA, such as miRNAs that play key roles in brain neurodevelopmental and maintenance pathways, and hsa-mir-155 expression in neurons. Comparison with existing method: Our method is the first to combine the approaches for: laser-capture of pyramidal neurons from long-term formalin-fixed brain; extract sRNA from laser-captured pyramidal neurons; apply a suite of bioinformatics tools to detect miRNA and other classes of sRNAs on sequenced samples having high levels of RNA degradation. CONCLUSION: This is the first study to show that sRNA can be rescued from laser-captured FF pyramidal neurons.


Assuntos
Córtex Cerebral/metabolismo , Técnicas Genéticas , Microdissecção e Captura a Laser/métodos , MicroRNAs/metabolismo , Células Piramidais/metabolismo , Fixação de Tecidos , Adulto , Biologia Computacional/métodos , Formaldeído , Ácido Glutâmico/metabolismo , Humanos , Masculino , Parafina
18.
Front Hum Neurosci ; 8: 277, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904348

RESUMO

Increasingly, functional and evolutionary research has highlighted the important contribution emotion processing makes to complex human social cognition. As such, it may be asked whether neural structures involved in emotion processing, commonly referred to as limbic structures, have been impacted in human brain evolution. To address this question, we performed an extensive evolutionary analysis of multiple limbic structures using modern phylogenetic tools. For this analysis, we combined new volumetric data for the hominoid (human and ape) amygdala and 4 amygdaloid nuclei, hippocampus, and striatum, collected using stereological methods in complete histological series, with previously published datasets on the amygdala, orbital and medial frontal cortex, and insula, as well as a non-limbic structure, the dorsal frontal cortex, for contrast. We performed a parallel analysis using large published datasets including many anthropoid species (human, ape, and monkey), but fewer hominoids, for the amygdala and 2 amygdaloid subdivisions, hippocampus, schizocortex, striatum, and septal nuclei. To address evolutionary change, we compared observed human values to values predicted from regressions run through (a) non-human hominoids and (b) non-human anthropoids, assessing phylogenetic influence using phylogenetic generalized least squares regression. Compared with other hominoids, the volumes of the hippocampus, the lateral nucleus of the amygdala, and the orbital frontal cortex were, respectively, 50, 37, and 11% greater in humans than predicted for an ape of human hemisphere volume, while the medial and dorsal frontal cortex were, respectively, 26 and 29% significantly smaller. Compared with other anthropoids, only human values for the striatum fell significantly below predicted values. Overall, the data present support for the idea that regions involved in emotion processing are not necessarily conserved or regressive, but may even be enhanced in recent human evolution.

19.
Biol Psychiatry ; 75(12): 929-35, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24041506

RESUMO

Recent applications of genomic tools on the analysis of alterations unique to our species coupled with a growing number of neuroanatomical studies across primates provide an unprecedented opportunity to compile different levels of human brain evolution into a complex whole. Applications of induced pluripotent stem cell (iPSC) technology, capable of reprogramming somatic tissue of different species and generating species-specific neuronal phenotypes, for the first time offer an opportunity to test specific evolutionary hypotheses in a field of inquiry that has been long plagued by the limited availability of research specimens. In this review, we will focus specifically on the experimental role of iPSC technology as applied to the analysis of neocortical pyramidal neurons. Pyramidal neurons emerge as particularly suitable for testing evolutionary scenarios, since they form the most common morphological class of neurons in the cortex, display morphological variations across different cortical areas and cortical layers that appear species-specific, and express unique molecular signatures. Human and nonhuman primate iPSC-derived neurons may represent a unique biological resource to elucidate the phenotypic differences between humans and other hominids. As the typical morphology of pyramidal neurons tends to be compromised in neurological disorders, application of iPSC technology to the analysis of pyramidal neurons could not only bring new insights into human adaptation but also offer opportunities to link biomedical research with studies of the origins of the human species.


Assuntos
Evolução Biológica , Células-Tronco Pluripotentes Induzidas/citologia , Primatas , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia , Neurogênese , Fenótipo , Células Piramidais/citologia , Células Piramidais/patologia
20.
Front Hum Neurosci ; 7: 707, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24194709

RESUMO

Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...