Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 53: 101264, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34091063

RESUMO

OBJECTIVE: Early postnatal life is a critical period for the establishment of the functional ß-cell mass that will sustain whole-body glucose homeostasis during the lifetime. ß cells are formed from progenitors during embryonic development but undergo significant expansion in quantity and attain functional maturity after birth. The signals and pathways involved in these processes are not fully elucidated. Cyclic adenosine monophosphate (cAMP) is an intracellular signaling molecule that is known to regulate insulin secretion, gene expression, proliferation, and survival of adult ß cells. The heterotrimeric G protein Gs stimulates the cAMP-dependent pathway by activating adenylyl cyclase. In this study, we sought to explore the role of Gs-dependent signaling in postnatal ß-cell development. METHODS: To study Gs-dependent signaling, we generated conditional knockout mice in which the α subunit of the Gs protein (Gsα) was ablated from ß-cells using the Cre deleter line Ins1Cre. Mice were characterized in terms of glucose homeostasis, including in vivo glucose tolerance, glucose-induced insulin secretion, and insulin sensitivity. ß-cell mass was studied using histomorphometric analysis and optical projection tomography. ß-cell proliferation was studied by ki67 and phospho-histone H3 immunostatining, and apoptosis was assessed by TUNEL assay. Gene expression was determined in isolated islets and sorted ß cells by qPCR. Intracellular cAMP was studied in isolated islets using HTRF-based technology. The activation status of the cAMP and insulin-signaling pathways was determined by immunoblot analysis of the relevant components of these pathways in isolated islets. In vitro proliferation of dissociated islet cells was assessed by BrdU incorporation. RESULTS: Elimination of Gsα in ß cells led to reduced ß-cell mass, deficient insulin secretion, and severe glucose intolerance. These defects were evident by weaning and were associated with decreased proliferation and inadequate expression of key ß-cell identity and maturation genes in postnatal ß-cells. Additionally, loss of Gsα caused a broad multilevel disruption of the insulin transduction pathway that resulted in the specific abrogation of the islet proliferative response to insulin. CONCLUSION: We conclude that Gsα is required for ß-cell growth and maturation in the early postnatal stage and propose that this is partly mediated via its crosstalk with insulin signaling. Our findings disclose a tight connection between these two pathways in postnatal ß cells, which may have implications for using cAMP-raising agents to promote ß-cell regeneration and maturation in diabetes.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais
2.
Nat Commun ; 11(1): 5982, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239617

RESUMO

Expanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass.


Assuntos
Envelhecimento/fisiologia , Proteínas de Sinalização Intercelular CCN/metabolismo , Células Secretoras de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Proteínas Proto-Oncogênicas/metabolismo , Envelhecimento/sangue , Animais , Proteínas de Sinalização Intercelular CCN/sangue , Proteínas de Sinalização Intercelular CCN/genética , Proliferação de Células , Células Cultivadas , Meios de Cultura/metabolismo , Diabetes Mellitus/terapia , Feminino , Humanos , Células Secretoras de Insulina/transplante , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células/métodos , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...