Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14676, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918540

RESUMO

The continuous increase in cancer rates, failure of conventional chemotherapies to control the disease, and excessive toxicity of chemotherapies clearly demand alternative approaches. Natural products contain many constituents that can act on various bodily targets to induce pharmacodynamic responses. This study aimed to explore the combined anticancer effects of Rumex obtusifolius (RO) extract and the chemotherapeutic agent 5-fluorouracil (5-FU) on specific molecular targets involved in cancer progression. By focusing on the PI3K/Akt signaling pathway and its related components, such as cytokines, growth factors (TNFa, VEGFa), and enzymes (Arginase, NOS, COX-2, MMP-2), this research sought to elucidate the molecular mechanisms underlying the anticancer effects of RO extract, both independently and in combination with 5-FU, in non-small lung adenocarcinoma A549 cells. The study also investigated the potential interactions of compounds identified by HPLC/MS/MS of RO on PI3K/Akt in the active site pocket through an in silico analysis. The ultimate goal was to identify potent therapeutic combinations that effectively inhibit, prevent or delay cancer development with minimal side effects. The results revealed that the combined treatment of 5-FU and RO demonstrated a significant reduction in TNFa levels, comparable to the effect observed with RO alone. RO modulated the PI3K/Akt pathway, influencing the phosphorylated and total amounts of these proteins during the combined treatment. Notably, COX-2, a key player in inflammatory processes, substantially decreased with the combination treatment. Caspase-3 activity, indicative of apoptosis, increased by 1.8 times in the combined treatment compared to separate treatments. In addition, the in silico analyses explored the binding affinities and interactions of RO's major phytochemicals with intracellular targets, revealing a high affinity for PI3K and Akt. These findings suggest that the combined treatment induces apoptosis in A549 cells by regulating the PI3K/Akt pathway.


Assuntos
Apoptose , Fluoruracila , Fosfatidilinositol 3-Quinases , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt , Rumex , Transdução de Sinais , Humanos , Fluoruracila/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fosfatidilinositol 3-Quinases/metabolismo , Células A549 , Rumex/química , Transdução de Sinais/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação por Computador , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
2.
J Mech Behav Biomed Mater ; 152: 106421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280269

RESUMO

In this paper, the results obtained in the development of ceramic resin feedstock for stereolithography are shown. Hydroxyapatite and silica are used as source of ceramic. Hydroxyapatite is extracted from bovine bone, which enhances bioactivity of ceramic scaffold. The influence of hydroxyapatite amount in polymer-based slurry on the viscosity and printability of feedstock is explored. Hydroxyapatite and silica containing scaffolds are successfully obtained by stereolithography. Influence of hydroxyapatite/silica ratio on the bioactivity, biodegradability and mechanical properties of the scaffolds is also studied. It was observed that higher concentrations of hydroxyapatite led to improved mechanical strength of the scuffolds but increased viscosity of the slurry, affecting printability. Cell viability assays and cell visualization experiments indicated that the scaffolds not cause significant cell toxicity.


Assuntos
Dióxido de Silício , Estereolitografia , Animais , Bovinos , Regeneração Óssea , Cerâmica , Durapatita
3.
Toxins (Basel) ; 14(11)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36355974

RESUMO

Increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the biological effects of snake venoms. However, the complexity of animal venoms and the extreme synergy of the venom components during envenomation calls for critical review and analysis. The epithelium is a primary target for injected viper venom's toxic substances, and therefore, is a focus in modern toxinology. We used the Vero epithelial cell line as a model to compare the actions of a crude Macrovipera lebetina obtusa (Levantine viper) venom with the actions of the same venom with two key enzymatic components inhibited (specifically, phospholipase A2 (PLA2) and metalloproteinases) in the bioenergetic cellular response, i.e., oxygen uptake and reactive oxygen species generation. In addition to the rate of free-radical oxidation and lipid peroxidation, we measured real-time mitochondrial respiration (based on the oxygen consumption rate) and glycolysis (based on the extracellular acidification rate) using a Seahorse analyzer. Our data show that viper venom drives an increase in both glycolysis and respiration in Vero cells, while the blockage of PLA2 or/and metalloproteinases affects only the rates of the oxidative phosphorylation. PLA2-blocking in venom also increases cytotoxic activity and the overproduction of reactive oxygen species. These data show that certain components of the venom may have a different effect within the venom cocktail other than the purified enzymes due to the synergy of the venom components.


Assuntos
Venenos de Víboras , Viperidae , Animais , Chlorocebus aethiops , Venenos de Víboras/toxicidade , Células Vero , Espécies Reativas de Oxigênio/metabolismo , Viperidae/metabolismo , Fosfolipases A2/farmacologia , Fosfolipases A2/metabolismo , Metaloproteases/toxicidade , Metaloproteases/metabolismo , Peroxidação de Lipídeos
4.
Korean J Pain ; 35(2): 140-151, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35354677

RESUMO

Background: Essential oils are of great interest for their analgesic and anti-inflammatory properties. We aimed to study the content of the essential oil of the Origanum vulgare of the Armenian highlands (OVA) in different periods of vegetation and to investigate its antinociceptive and anti-inflammatory effects in mice (in vivo) and cytotoxic action in cultured cells (in vitro). OVA essential oil was extracted from fresh plant material by hydro-distillation. Methods: For OVA essential oil contents determination the gas chromatography-mass spectrometry method was used. Formalin and hot plate tests and analysis of cell viability using the methyl-thiazolyl-tetrazolium (MTT) assay were used. Results: The maximal content of ß-caryophyllene and ß-caryophyllene oxide in OVA essential oil was revealed in the period of blossoming (8.18% and 13.36%, correspondently). In the formalin test, 4% OVA essential oil solution (3.5 mg/mouse) exerts significant antinociceptive and anti-inflammatory effects (P = 0.003). MTT assay shows approximately 60% cytotoxicity in HeLa and Vero cells for 2.0 µL/mL OVA essential oil in media. Conclusions: The wild oregano herb of Armenian highlands, harvested in the blossoming period, may be considered as a valuable source for developing pain-relieving preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...