Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 24(15): 6256-6266, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39131447

RESUMO

Crystalline riboflavin (vitamin B2) performs an important biological role as an optically functional material in the tapetum lucidum of certain animals, notably lemurs and cats. The tapetum lucidum is a reflecting layer behind the retina, which serves to enhance photon capture and vision in low-light settings. Motivated by the aim of rationalizing its biological role, and given that the structure of biogenic solid-state riboflavin remains unknown, we have used a range of experimental and computational techniques to determine the solid-state structure of synthetic riboflavin. Our multitechnique approach included microcrystal XRD, powder XRD, three-dimensional electron diffraction (3D-ED), high-resolution solid-state 13C NMR spectroscopy, and dispersion-augmented density functional theory (DFT-D) calculations. Although an independent report of the crystal structure of riboflavin was published recently, our structural investigations reported herein provide a different interpretation of the intermolecular hydrogen-bonding arrangement in this material, supported by all the experimental and computational approaches utilized in our study. We also discuss, more generally, potential pitfalls that may arise in applying DFT-D geometry optimization as a bridging step between structure solution and Rietveld refinement in the structure determination of hydrogen-bonded materials from powder XRD data. Finally, we report experimental and computational values for the refractive index of riboflavin, with implications for its optical function.

2.
Front Bioeng Biotechnol ; 12: 1324802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712332

RESUMO

The fallopian tubes play an important role in human fertility by facilitating the spermatozoa passage to the oocyte as well as later actively facilitating the fertilized oocyte transportation to the uterus cavity. The fallopian tubes undergo changes involving biological, physical, and morphological processes due to women aging, which may impair fertility. Here, we have modelled fallopian tubes of women at different ages and evaluated the chances of normal and pathological sperm cells reaching the fertilization site, the ampulla. By utilizing a unique combination of simulative tools, we implemented dynamic three-dimensional (3D) detailed geometrical models of many normal and pathological sperm cells swimming together in 3D geometrical models of three fallopian tubes associated with different women's age groups. By tracking the sperm cell swim, we found that for all age groups, the number of normal sperm cells in the ampulla is the largest, compared with the pathological sperm cells. On the other hand, the number of normal sperm cells in the fertilization site decreases due to the morphological and mechanical changes that occur in the fallopian tube with age. Moreover, in older ages, the normal sperm cells swim with lower velocities and for shorter distances inside the ampulla toward the ovary. Thus, the changes that the human fallopian tube undergoes due to women's aging have a significant influence on the human sperm cell motility. Our model of sperm cell motility through the fallopian tube in relation to the woman's age morphological changes provides a new scope for the investigation and treatment of diseases and infertility cases associated with aging, as well as a potential personalized medicine tool for evaluating the chances of a natural fertilization per specific features of a man's sperm and a woman's reproductive system.

3.
Cytometry A ; 105(8): 570-579, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38666711

RESUMO

Bladder cancer is one of the most common cancers with a high recurrence rate. Patients undergo mandatory yearly scrutinies, including cystoscopies, which makes bladder cancer highly distressing and costly. Here, we aim to develop a non-invasive, label-free method for the detection of bladder cancer cells in urine samples, which is based on interferometric imaging flow cytometry. Eight urothelial carcinoma and one normal urothelial cell lines, along with red and white blood cells, imaged quantitatively without staining by an interferometric phase microscopy module while flowing in a microfluidic chip, and classified by two machine-learning algorithms, based on deep-learning semantic segmentation convolutional neural network and extreme gradient boosting. Furthermore, urine samples obtained from bladder-cancer patients and healthy volunteers were imaged, and classified by the system. We achieved accuracy and area under the curve (AUC) of 99% and 97% for the cell lines on both machine-learning algorithms. For the real urine samples, the accuracy and AUC were 96% and 96% for the deep-learning algorithm and 95% and 93% for the gradient-boosting algorithm, respectively. By combining label-free interferometric imaging flow cytometry with high-end classification algorithms, we achieved high-performance differentiation between healthy and malignant cells. The proposed technique has the potential to supplant cystoscopy in the bladder cancer surveillance and diagnosis space.


Assuntos
Citometria de Fluxo , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina , Citometria de Fluxo/métodos , Linhagem Celular Tumoral , Interferometria/métodos , Algoritmos , Aprendizado de Máquina , Aprendizado Profundo
4.
Bioengineering (Basel) ; 11(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38534530

RESUMO

Myelodysplastic syndromes (MDSs) are a group of potentially deadly diseases that affect the morphology and function of neutrophils. Rapid diagnosis of MDS is crucial for the initiation of treatment that can vastly improve disease outcome. In this work, we present a new approach for detecting morphological differences between neutrophils isolated from blood samples of high-risk MDS patients and blood bank donors (BBDs). Using fluorescent flow cytometry, neutrophils were stained with 2',7'-dichlorofluorescin diacetate (DCF), which reacts with reactive oxygen species (ROS), and Hoechst, which binds to DNA. We observed that BBDs possessed two cell clusters (designated H and L), whereas MDS patients possessed a single cluster (L). Later, we used FACS to sort the H and the L cells and used interferometric phase microscopy (IPM) to image the cells without utilizing cell staining. IPM images showed that H cells are characterized by low optical path delay (OPD) in the nucleus relative to the cytoplasm, especially in cell vesicles containing ROS, whereas L cells are characterized by low OPD in the cytoplasm relative to the nucleus and no ROS-containing vesicles. Moreover, L cells present a higher average OPD and dry mass compared to H cells. When examining neutrophils from MDS patients and BBDs by IPM during flow, we identified ~20% of cells as H cells in BBDs in contrast to ~4% in MDS patients. These results indicate that IPM can be utilized for the diagnosis of complex hematological pathologies such as MDS.

6.
ACS Nano ; 18(3): 2421-2433, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190624

RESUMO

Carbon quantum dots (CQDs) are one of the most promising types of fluorescent nanomaterials due to their exceptional water solubility, excellent optical properties, biocompatibility, chemical inertness, excellent refractive index, and photostability. Nitrogen-containing CQDs, which include amino acid based CQDs, are especially attractive due to their high quantum yield, thermal stability, and potential biomedical applications. Recent studies have attempted to improve the preparation of amino acid based CQDs. However, the highest quantum yield obtained for these dots was only 44%. Furthermore, the refractive indices of amino acid derived CQDs were not determined. Here, we systematically explored the performance of CQDs prepared from all 20 coded amino acids using modified hydrothermal techniques allowing more passivation layers on the surface of the dots to optimize their performance. Intriguingly, we obtained the highest refractive indices ever reported for any CQDs. The values differed among the amino acids, with the highest refractive indices found for positively charged amino acids including arginine-CQDs (∼2.1), histidine-CQDs (∼2.0), and lysine-CQDs (∼1.8). Furthermore, the arginine-CQDs reported here showed a nearly 2-fold increase in the quantum yield (∼86%) and a longer decay time (∼8.0 ns) compared to previous reports. In addition, we also demonstrated that all amino acid based CQD materials displayed excitation-dependent emission profiles (from UV to visible) and were photostable, water-soluble, noncytotoxic, and excellent for high contrast live cell imaging or bioimaging. These results indicate that amino acid based CQD materials are high-refractive-index materials applicable for optoelectronic devices, bioimaging, biosensing, and studying cellular organelles in vivo. This extraordinary RI may be highly useful for exploring cellular elements with different densities.


Assuntos
Pontos Quânticos , Refratometria , Aminoácidos , Pontos Quânticos/química , Carbono/química , Água , Arginina
7.
Nat Photonics ; 17(12): 1031-1041, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38523771

RESUMO

Label-free optical imaging employs natural and nondestructive approaches for the visualisation of biomedical samples for both biological assays and clinical diagnosis. Currently, this field revolves around multiple broad technology-oriented communities, each with a specific focus on a particular modality despite the existence of shared challenges and applications. As a result, biologists or clinical researchers who require label-free imaging are often not aware of the most appropriate modality to use. This manuscript presents a comprehensive review of and comparison among different label-free imaging modalities and discusses common challenges and applications. We expect this review to facilitate collaborative interactions between imaging communities, push the field forward and foster technological advancements, biophysical discoveries, as well as clinical detection, diagnosis, and monitoring of disease.

8.
Laser Photon Rev ; 17(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38883699

RESUMO

Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...