Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 363: 121410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850919

RESUMO

Enzyme-induced calcium carbonate precipitation (EICP) and microbially-induced calcium carbonate precipitation (MICP) techniques represent emerging trends in soil stabilization. However, the impact of soil density on biomineralization, particularly in historical earthen sites, remains unclear. This study compares the consolidation effects of EICP and MICP on cylindrical samples (10 cm × 5 cm) with three densities (1.5 g/cm3, 1.6 g/cm3, and 1.7 g/cm3) derived from the soil near the UNESCO World Cultural Heritage Site of Suoyang Ancient City, Gansu Province, China. Results showed that calcium carbonate production increased across all densities through bio-cementation, with higher densities producing more calcium carbonate. MICP-treated specimens exhibited larger increases in calcium carbonate production compared to those treated with EICP. Specimens with a density of 1.7 g/cm³ showed a wave velocity increase of 3.26% (EICP) and 7.13% (MICP), and an unconfined compressive strength increase of 8% (EICP) and 26% (MICP). These strength increases correlated with the generation of calcium carbonate. The findings suggest that biomineralization can be effectively utilized for in situ consolidation of earthen sites, emphasizing the importance of considering soil density in biologically-based conservation technologies. Furthermore, MICP shows potential advantages over EICP in providing stronger, compatible and more sustainable soil reinforcement.


Assuntos
Biomineralização , Carbonato de Cálcio , Solo , Carbonato de Cálcio/química , Solo/química , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...