Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Crit Rev Microbiol ; 49(4): 435-454, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35649163

RESUMO

Treatment to common bacterial infections are becoming ineffective of late, owing to the emergence and dissemination of antibiotic resistance globally. Escherichia coli and Klebsiella pneumoniae are the most notorious microorganisms and are among the critical priority pathogens listed by WHO in 2017. These pathogens are the predominant cause of sepsis, urinary tract infections (UTIs), pneumonia, meningitis and pyogenic liver abscess. Concern arises due to the resistance of bacteria to most of the beta lactam antibiotics like penicillin, cephalosporin, monobactams and carbapenems, even to the last resort antibiotics like colistin. Preventing influx by modulation of porins, extruding the antibiotics by overexpression of efflux pumps, mutations of drug targets/receptors, biofilm formation, altering the drug molecules and rendering them ineffective are few resistance mechanisms that are adapted by Enterobacteriaeceae upon exposure to antibiotics. The situation is exacerbated due to the process of horizontal gene transfer (HGT), wherein the genes encoding resistance mechanisms are transferred to the neighbouring bacteria through plasmids/phages/uptake of free DNA. Carbapenemases, other beta lactamases and mcr genes coding for colistin resistance are widely disseminated leading to limited/no therapeutic options against those infections. Development of new antibiotics can be viewed as a possible solution but it involves major investment, time and labour despite which, the bacteria can easily adapt to the new antibiotic and evolve resistance in a relatively short time. Targeting the resistance mechanisms can be one feasible alternative to tackle these multidrug resistant (MDR) pathogens. Removal of plasmid (plasmid curing) causing resistance, use of bacteriophages and bacteriotherapy can be other potential approaches to combat infections caused by MDR E. coli and K. pneumoniae. The present review discusses the efficacies of these therapies in mitigating these infections, which can be potentially used as an adjuvant therapy along with existing antibiotics.


Assuntos
Enterobacteriaceae , Escherichia coli , Escherichia coli/genética , Klebsiella pneumoniae/genética , Colistina/farmacologia , Colistina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , beta-Lactamases/genética , Plasmídeos , Monobactamas/farmacologia , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
2.
Colloids Surf B Biointerfaces ; 213: 112405, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35255375

RESUMO

Antiretroviral drugs employed for the treatment of human immunodeficiency virus (HIV) infections have remained largely ineffective due to their poor bioavailability, numerous adverse effects, modest uptake in infected cells, undesirable drug-drug interactions, the necessity for long-term drug therapy, and lack of access to tissues and reservoirs. Nanotechnology-based interventions could serve to overcome several of these disadvantages and thereby improve the therapeutic efficacy of antiretrovirals while reducing the morbidity and mortality due to the disease. However, attempts to use nanocarriers for the delivery of anti-retroviral drugs have started gaining momentum only in the past decade. This review explores in-depth the various nanocarriers that have been employed for the treatment of HIV infections highlighting their merits and possible demerits.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Nanopartículas , Fármacos Anti-HIV/farmacologia , Antirretrovirais/uso terapêutico , Disponibilidade Biológica , Infecções por HIV/tratamento farmacológico , Humanos , Nanotecnologia
3.
Acta Virol ; 65(1): 10-26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33112638

RESUMO

Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome caused by a novel strain of coronavirus (SARS-CoV-2) which was declared by WHO as a cause of global pandemic. By human-to-human transmission it caused severe damage to mankind with increased mortality rate worldwide. Coronavirus is a spherical enveloped virus with single stranded positive-sense RNA with a size of ~30 kilobases encoding various structural, non-structural and accessory proteins. The entry of coronavirus into the host cells is mediated by spike proteins. SARS-CoV-2 efficiently replicates in host cell and by evading immune surveillance, like innate and adaptive immune responses, in the host cells ultimately leads to increased virulence and disease outcome. In the current review, we highlighted the molecular insights of SARS-CoV-2 and its infection mechanism in the host cell via host-viral protein interactions based on currently available data up to 16thMay 2020 using various research literature databases. The diagnostics of SARS-CoV-2 is mainly done by RT-qPCR and serological tests. There is no effective treatment for COVID-19, however, few methods like plasma therapy and remdesivir treatment are reported to show promising results in improving patient's health and decreasing mortality rate. Keywords: SARS-CoV; spike protein; nucleocapsid; COVID-19; interferon.


Assuntos
COVID-19/imunologia , Imunidade , COVID-19/diagnóstico , COVID-19/terapia , Humanos , Pandemias
4.
PeerJ ; 8: e9357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566414

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a pandemic by the World Health Organization, and the identification of effective therapeutic strategy is a need of the hour to combat SARS-CoV-2 infection. In this scenario, the drug repurposing approach is widely used for the rapid identification of potential drugs against SARS-CoV-2, considering viral and host factors. METHODS: We adopted a host transcriptome-based drug repurposing strategy utilizing the publicly available high throughput gene expression data on SARS-CoV-2 and other respiratory infection viruses. Based on the consistency in expression status of host factors in different cell types and previous evidence reported in the literature, pro-viral factors of SARS-CoV-2 identified and subject to drug repurposing analysis based on DrugBank and Connectivity Map (CMap) using the web tool, CLUE. RESULTS: The upregulated pro-viral factors such as TYMP, PTGS2, C1S, CFB, IFI44, XAF1, CXCL2, and CXCL3 were identified in early infection models of SARS-CoV-2. By further analysis of the drug-perturbed expression profiles in the connectivity map, 27 drugs that can reverse the expression of pro-viral factors were identified, and importantly, twelve of them reported to have anti-viral activity. The direct inhibition of the PTGS2 gene product can be considered as another therapeutic strategy for SARS-CoV-2 infection and could suggest six approved PTGS2 inhibitor drugs for the treatment of COVID-19. The computational study could propose candidate repurposable drugs against COVID-19, and further experimental studies are required for validation.

5.
Folia Microbiol (Praha) ; 62(1): 73-87, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27709447

RESUMO

HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called "shock and kill" strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Latência Viral/efeitos dos fármacos , Pesquisa Biomédica/tendências , Descoberta de Drogas/tendências , Humanos
6.
Antiviral Res ; 92(3): 434-46, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001321

RESUMO

Human immunodeficiency virus-1 (HIV-1) successfully escapes from host immune surveillance, vaccines and antiretroviral agents. The available antiretroviral compounds can only control viremia, but it is impossible to eliminate the virus from the organism, namely because HIV-1 provirus persists in the reservoir cells from which the virus repeatedly disseminates into new cells. Current therapeutic approaches, however, do not specifically address the stage of virus reactivation. Heme has been demonstrated as very efficient in inhibiting HIV-1 reverse transcription, while its derivative hemin ameliorated HIV-1 infection via induction of heme oxygenase-1. Normosang (heme arginate; HA) is a human hemin-containing compound used to treat acute porphyria. In this work, we studied the effects of HA in HIV-1-acutely infected T-cell lines, and in cell lines harboring either a complete HIV-1 provirus (ACH-2 cells) or an HIV-1 "mini-virus" (Jurkat clones expressing EGFP under control of HIV LTR). We demonstrate that HA inhibited HIV-1 replication during the acute infection, which was accompanied by the inhibition of reverse transcription. On the other hand, HA alone stimulated the reactivation of HIV-1 "mini-virus" and synergized with phorbol ester or TNF-α in the reactivation of HIV-1 provirus. The stimulatory effects of HA were inhibited by N-acetyl cysteine, suggesting an increased redox stress and activation of NF-κB. Further, HA induced expression of heme oxygenase-1 (HO-1) in ACH-2 cells, while HO-1 was found expressed in untreated Jurkat clones. Inhibitor of HO-1 activity, tin protoporphyrin IX, further increased HA-mediated reactivation of HIV-1 "mini-virus" in Jurkat clones, and this effect was also inhibited by N-acetyl cysteine. The stimulatory effects of HA on HIV-1 reactivation thus seem to involve HO-1 and generation of free radicals. Additionally, the effective concentrations of HA did neither affect normal T-cell activation with PMA nor induce activation of the unstimulated cells. In conclusion, HA appears to possess a combination of unique properties that could help to decrease the pool of latently infected reservoir cells, while simultaneously inhibiting HIV-1 replication in newly infected cells. Our results thus suggest a new direction to explore in treatment of HIV/AIDS disease.


Assuntos
Fármacos Anti-HIV/farmacologia , Arginina/farmacologia , HIV-1/efeitos dos fármacos , Heme/farmacologia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Acetilcisteína/farmacologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linhagem Celular , HIV-1/fisiologia , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Humanos , Células Jurkat , Lectinas Tipo C/metabolismo , Metaloporfirinas/farmacologia , Protoporfirinas/farmacologia , Provírus/efeitos dos fármacos , Provírus/genética , Transcrição Reversa/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...