Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Small Methods ; : e2301682, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332438

RESUMO

Triboelectric nanogenerators (TENGs) can collect and convert random mechanical energy into electric energy, with remarkable advantages including broadly available materials, straightforward preparation, and multiple applications. Over the years, researchers have made substantial advancements in the theoretical and practical aspects of TENG. Nevertheless, the pivotal challenge in realizing full applications of TENG lies in ensuring that the generated output meets the specific application requirements. Consequently, substantial research is dedicated to exploring methods and mechanisms for enhancing the output performance of TENG devices. This review aims to comprehensively examine the influencing factors and corresponding improvement strategies of the output performance based on the contact electrification mechanism and operational principles that underlie TENG technology. This review primarily delves into five key areas of improvement: materials selection, surface modification, component adjustments, structural optimization, and electrode enhancements. These aspects are crucial in tailoring TENG devices to meet the desired performance metrics for various applications.

2.
Free Radic Biol Med ; 213: 233-247, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215891

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) reactivation is a major problem that must be overcome during chemotherapy for HBV-related hepatocellular carcinoma (HCC). However, the mechanism underlying chemotherapy-associated HBV reactivation is still not fully understood, hindering the development of improved HBV-related HCC treatments. METHODS: A meta-analysis was performed to assess the HBV reactivation risk during transcatheter arterial chemoembolization (TACE). To investigate the regulatory effects and mechanisms of 5-FU on HBV replication, an HBV mouse model was established by pAAV-HBV1.2 hydrodynamic injection followed by intraperitoneal 5-FU injection, and different in vitro models (HepG2.2.15 or Huh7 cells) were established. Realtime RT‒qPCR, western blotting, luciferase assays, and immunofluorescence were used to determine viral parameters. We also explored the underlying mechanisms by RNA-seq, oxidative stress evaluation and autophagy assessment. RESULTS: The pooled estimated rate of HBV reactivation in patients receiving TACE was 30.3 % (95 % CI, 23.1%-37.4 %). 5-FU, which is a chemotherapeutic agent commonly used in TACE, promoted HBV replication in vitro and in vivo. Mechanistically, 5-FU treatment obviously increased autophagosome formation, as shown by increased LC3-II levels. Additionally, 5-FU impaired autophagic degradation, as shown by marked p62 and mCherry-GFP-LC3 upregulation, ultimately promoting HBV replication and secretion. Autophagy inhibition by 3-methyladenine or chloroquine significantly altered 5-FU-induced HBV replication. Furthermore, 5-FU-induced autophagy and HBV replication were markedly attenuated with a reactive oxygen species (ROS) scavenger. CONCLUSIONS: Together, our results indicate that ROS-induced autophagosome formation and autophagic degradation play a critical role in 5-FU-induced HBV reactivation.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Vírus da Hepatite B/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Espécies Reativas de Oxigênio/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Quimioembolização Terapêutica/métodos , Autofagia , Estresse Oxidativo , Fluoruracila/farmacologia , Replicação Viral
3.
MedComm (2020) ; 4(5): e354, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37638336

RESUMO

Calcipotriol (CAL) has been widely studied as a fibrosis inhibitor and used to treat plaque psoriasis via transdermal administration. The clinical application of CAL to treat liver fibrosis is bottlenecked by its unsatisfactory pharmacokinetics, biodistribution, and side effects, such as hypercalcemia in patients. The exploration of CAL as a safe and effective antifibrotic agent remains a major challenge. Therefore, we rationally designed and synthesized a self-assembled drug nanoparticle encapsulating CAL in its internal hydrophobic core for systematic injection (termed NPs/CAL) and further investigated the beneficial effect of the nanomaterial on liver fibrosis. C57BL/6 mice were used as the animal model, and human hepatic stellate cell line LX-2 was used as the cellular model of hepatic fibrogenesis. Immunofluorescence staining, flow cytometry, western blotting, immunohistochemical staining, and in vitro imaging were used for evaluating the efficacy of NPs/CAL treatment. We found NPs/CAL can be quickly internalized in vitro, thus potently deactivating LX-2 cells. In addition, NPs/CAL improved blood circulation and the accumulation of CAL in liver tissue. Importantly, NPs/CAL strongly contributed to the remission of liver fibrosis without inducing hypercalcemia. Overall, our work identifies a promising paradigm for the development of nanomaterial-based agents for liver fibrosis therapy.

4.
Braz J Med Biol Res ; 56: e12604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585914

RESUMO

Chondrocyte inflammation and catabolism are two major features in the progression of osteoarthritis (OA). Chelidonine, a principal alkaloid extracted from Chelidonium majus, is suggested to show anti-inflammation, anti-apoptosis, and anti-oxidation activities in various diseases. However, its potential effects on OA cartilage degeneration remains unclear. To evaluate the effect of chelidonine on OA and its underlying mechanism, we incubated chondrocytes with interleukin (IL)-1ß and chelidonine at varying concentrations. Then, we performed the CCK-8 assay, fluorescence immunostaining, reverse transcription PCR, ELISA, and western blotting to evaluate cell viability, catabolic/inflammatory factors, levels of extracellular matrix (ECM)-related proteins, and the involved pathways. H&E and Safranin-O staining and ELISA were performed to measure cartilage degradation and synovial inflammation. Chelidonine suppressed the IL-1ß-mediated catabolism and inflammation of chondrocytes. Chelidonine suppressed the NF-κB pathway activation. Similarly, our in vivo experiment showed that chelidonine partially attenuated cartilage degradation while inhibiting synovial inflammation. Chelidonine inhibited inflammation and catabolism through modulation of NF-κB pathways in vitro, thereby avoiding rat cartilage degeneration and synovial inflammation within OA.


Assuntos
Condrócitos , Osteoartrite , Animais , Ratos , Cartilagem/metabolismo , Condrócitos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/farmacologia , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico
5.
Braz. j. med. biol. res ; 56: e12604, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1505883

RESUMO

Chondrocyte inflammation and catabolism are two major features in the progression of osteoarthritis (OA). Chelidonine, a principal alkaloid extracted from Chelidonium majus, is suggested to show anti-inflammation, anti-apoptosis, and anti-oxidation activities in various diseases. However, its potential effects on OA cartilage degeneration remains unclear. To evaluate the effect of chelidonine on OA and its underlying mechanism, we incubated chondrocytes with interleukin (IL)-1β and chelidonine at varying concentrations. Then, we performed the CCK-8 assay, fluorescence immunostaining, reverse transcription PCR, ELISA, and western blotting to evaluate cell viability, catabolic/inflammatory factors, levels of extracellular matrix (ECM)-related proteins, and the involved pathways. H&E and Safranin-O staining and ELISA were performed to measure cartilage degradation and synovial inflammation. Chelidonine suppressed the IL-1β-mediated catabolism and inflammation of chondrocytes. Chelidonine suppressed the NF-κB pathway activation. Similarly, our in vivo experiment showed that chelidonine partially attenuated cartilage degradation while inhibiting synovial inflammation. Chelidonine inhibited inflammation and catabolism through modulation of NF-κB pathways in vitro, thereby avoiding rat cartilage degeneration and synovial inflammation within OA.

6.
Sci Adv ; 8(21): eabo5201, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622923

RESUMO

Artificial haptic sensors form the basis of touch-based human-interfaced applications. However, they are unable to respond to remote events before physical contact. Some elasmobranch fishes, such as seawater sharks, use electroreception somatosensory system for remote environmental perception. Inspired by this ability, we design a soft artificial electroreceptor for sensing approaching targets. The electroreceptor, enabled by an elastomeric electret, is capable of encoding environmental precontact information into a series of voltage pulses functioning as unique precontact human interfaces. Electroceptor applications are demonstrated in a prewarning system, robotic control, game operation, and three-dimensional object recognition. These capabilities in perceiving proximal precontact events can lenrich the functionalities and applications of human-interfaced electronics.

7.
Research (Wash D C) ; 2022: 9861463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265850

RESUMO

Contact electrification (CE) involves a complex interplay of physical interactions in realistic material systems. For this reason, scientific consensus on the qualitative and quantitative importance of different physical mechanisms on CE remains a formidable task. The CE mechanism at a water/polymer interface is a crucial challenge owing to the poor understanding of charge transfer at the atomic level. First-principle density functional theory (DFT), used in the present work, proposes a new paradigm to address CE. Our results indicate that CE follows the same trend as the gap between the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of polymers. Electron transfer occurs at the outmost atomic layer of the water/polymer interface and is closely linked to the functional groups and atom locations. When the polymer chains are parallel to the water layer, most electrons are transferred; conversely, if they are perpendicular to each other, the transfer of charges can be ignored. We demonstrate that a decrease in the interface distance between water and the polymer chains leads to CE in quantitative agreement with the electron cloud overlap model. We finally use DFT calculations to predict the properties of CE materials and their potential for triboelectric nanogenerator energy harvesting devices.

8.
Zhongguo Zhong Yao Za Zhi ; 47(1): 203-223, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178927

RESUMO

This study aims to explore the molecular mechanism of Ganoderma against gastric cancer based on network pharmacology, molecular docking, and cell experiment. The active components and targets of Ganoderma were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), and gastric cancer-related targets from GeneCards and Online Mendelian Inheritance in Man(OMIM). The protein-protein interaction(PPI) network of the common targets was constructed with STRING, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis of the common genes based on Bioconductor and R language. The medicinal-disease-component-target network and medicinal-disease-component-target-pathway network were established by Cytoscape. Molecular docking was performed between ß-sitosterol(the key component in Ganoderma) and the top 15 targets in the PPI network. Cell experiment was performed to verify the findings. A total of 14 active components and 28 targets of Ganoderma were retrieved, and the medicinal and the disease shared 25 targets, including caspase-3(CASP3), caspase-8(CASP8), caspase-9(CASP9), and B-cell lymphoma-2(BCL2). The common targets involved 72 signaling pathways and apoptosis and p53 signaling pathway may play a crucial role in the effect of Ganoderma against gastric cancer. ß-sitosterol had strong binding activity to the top 15 targets in the PPI network. The in vitro cell experiment demonstrated that ß-sitosterol inhibited gastric cancer AGS cell proliferation by inducing cell apoptosis and cell cycle arrest in the S phase, which might be related to the regulation of the p53 pathway. This study shows the multi-component, multi-target, and multi-pathway characteristics of Ganoderma against gastric cancer, which lays a scientific basis for further research on the molecular mechanism.


Assuntos
Ganoderma , Medicina Tradicional Chinesa , Neoplasias Gástricas , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
9.
Front Endocrinol (Lausanne) ; 12: 778758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956090

RESUMO

Background: Neuroendocrine carcinoma (NEC) is a rare and highly malignant variation of prostate adenocarcinoma. We aimed to investigate the prognostic value of NEC in prostate cancer. Methods: A total of 530440 patients of prostate cancer, including neuroendocrine prostate cancer (NEPC) and adenocarcinoma from 2004 to 2018 were obtained from the national Surveillance, Epidemiology, and End Results (SEER) database. Propensity score matching (PSM), multivariable Cox proportional hazard model, Kaplan-Meier method and subgroup analysis were performed in our study. Results: NEPC patients were inclined to be older at diagnosis (Median age, 69(61-77) vs. 65(59-72), P< 0.001) and had higher rates of muscle invasive disease (30.9% vs. 9.2%, P < 0.001), lymph node metastasis (32.2% vs. 2.2%, P < 0.001), and distal metastasis (45.7% vs. 3.6%, P < 0.001) compared with prostate adenocarcinoma patients. However, the proportion of NEPC patients with PSA levels higher than 4.0 ng/mL was significantly less than adenocarcinoma patients (47.3% vs. 72.9%, P<0.001). NEPC patients had a lower rate of receiving surgery treatment (28.8% vs. 43.9%, P<0.001), but they had an obviously higher rate of receiving chemotherapy (57.9% vs. 1.0%, P<0.001). A Cox regression analysis demonstrated that the NEPC patients faced a remarkably worse OS (HR = 2.78, 95% CI = 2.34-3.31, P < 0.001) and CSS (HR = 3.07, 95% CI = 2.55-3.71, P < 0.001) compared with adenocarcinoma patients after PSM. Subgroup analyses further suggested that NEPC patients obtained significantly poorer prognosis across nearly all subgroups. Conclusion: The prognosis of NEPC was worse than that of adenocarcinoma among patients with prostate cancer. The histological subtype of NEC is an independent prognostic factor for patients with prostate cancer.


Assuntos
Carcinoma Neuroendócrino/diagnóstico , Neoplasias da Próstata/diagnóstico , Adenocarcinoma/diagnóstico , Adenocarcinoma/epidemiologia , Adenocarcinoma/patologia , Idoso , Carcinoma Neuroendócrino/epidemiologia , Carcinoma Neuroendócrino/patologia , Bases de Dados Factuais/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Pontuação de Propensão , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/patologia , Fatores de Risco , Programa de SEER
10.
Front Oncol ; 11: 775250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804980

RESUMO

Hepatocellular carcinoma (HCC) is a highly lethal type of malignancies that possesses great loss of life safety to human beings worldwide. However, few effective means of curing HCC exist and its specific molecular basis is still far from being fully elucidated. Activation of nuclear factor kappa B (NF-κB), which is often observed in HCC, is considered to play a significant part in hepatocarcinogenesis and development. The emergence of regulatory non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is a defining advance in cancer biology, and related research in this branch has yielded many diagnostic and therapeutic opportunities. Recent studies have suggested that regulatory ncRNAs act as inhibitors or activators in the initiation and progression of HCC by targeting components of NF-κB signaling or regulating NF-κB activity. In this review, we attach importance to the role and function of regulatory ncRNAs in NF-κB signaling of HCC and NF-κB-associated chemoresistance in HCC, then propose future research directions and challenges of regulatory ncRNAs mediated-regulation of NF-κB pathway in HCC.

11.
ACS Nano ; 15(5): 8706-8714, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33913695

RESUMO

With the advantages of superior wear resistance, mechanical durability, and stability, the liquid-solid mode triboelectric nanogenerator (TENG) has been attracting much attention in the field of energy harvesting and self-powered sensors. However, most reports are primarily observational, and there still lacks a universal model of this kind of TENG. Here, an equivalent circuit model and corresponding governing equations of a water-solid mode TENG are developed, which could easily be extended to other types of liquid-solid mode TENGs. Based on the first-order lumped circuit theory, the full equivalent circuit model of water-solid mode TENG is modeled as a series connection of two capacitors and a water resistor. Accordingly, its output characteristics and critical influences are examined, to investigate the relevant physical mechanism behind them. Afterward, a three-dimensional water-solid TENG array constructed from many single-wire TENGs is fabricated, which can not only harvest tiny amounts of energy from any movement of water, but also can verify our theoretical predictions. The fundamentals of the water-solid mode TENG presented in this work could contribute to solving the problem of electrical phenomena on a liquid-solid interface, and may establish a sound basis for a thorough understanding of the liquid-solid mode TENG.

12.
J Exp Clin Cancer Res ; 40(1): 53, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526055

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers with high incidence and mortality. However, the underlying mechanisms of HCC still remain unclear. Eukaryotic translation initiation factors (eIFs) have a substantial effect on tumor development. In this study, we were aimed to investigate the role of eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) in HCC. METHODS: Western blot (WB) of 30 paired HCC tissues and tissue microarrays (TMAs) conducted by immunohistochemistry (IHC) in 89 paired HCC samples were performed to assess EIF4G2 expression. Clone formation, real-time cell analysis (RTCA), wound healing and transwell assays were adopted to evaluate the role of EIF4G2 on HCC cell proliferation, migration and invasion abilities. The function of EIF4G2 in HCC tumor growth was assessed in a xenograft nude mouse model in vivo. The regulation of EIF4G2 by miR-144-3p was performed by luciferase reporter assay and WB. RESULTS: The EIF4G2 protein was clearly upregulated in HCC tissues, and high EIF4G2 expression was closely related to HCC prognosis. EIF4G2 silencing could inhibit HCC cell growth and metastasis in vitro, and suppress tumorigenesis in vivo by repressing the ERK signaling pathway. The results of luciferase reporter assays, WB and IHC staining verified that EIF4G2 was negatively regulated by miR-144. And re-expression of EIF4G2 could partially reverse the inhibiting effect of miR-144 in HCC. CONCLUSION: In summary, our study revealed the role of EIF4G2 in HCC development via the activation of the ERK pathway. We also found that EIF4G2 could be negatively regulated by the tumor suppressor miR-144. Our investigations indicated that EIF4G2 might be a promising therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fator de Iniciação Eucariótico 4G/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Interferência de RNA
13.
Int J Biol Macromol ; 172: 503-514, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33454330

RESUMO

The study aimed to reveal the different mechanisms of delaying starch digestion by ECG, EGCG and Procyanidin based on the perspective of α-amylase-flavanol interaction and starch-flavanol interaction. The interaction characteristics of flavanols with α-amylase were studied from five aspects: enzyme inhibition, kinetics, fluorescence quenching, circular dichroism (CD) and computer simulation. The IC50 of flavanols (ECG, EGCG and Procyanidin) against α-amylase were 172.21 ± 0.22, 732.15 ± 0.13 and 504.45 ± 0.19 µg/mL according to the results of α-amylase inhibition experiment, respectively. ECG and Procyanidin showed mixed inhibition against α-amylase, while EGCG showed non-competition against α-amylase. However, thermodynamic parameters,computer-based docking and dynamic simulation proved that ECG and EGCG-α-amylase complexs were mainly driven by van der Waals and hydrogen bonds, while Procyanidin-α-amylase complexs was driven by hydrophobic interaction. In addition, it was indicated, by means of starch­iodine complex spectroscopy, that flavanols inhibited the digestion of starch not only through bind with α-amylase but also through bind with starch. Thus, flavanols as a starch-based food additive have the potential to be employed as adjuvant therapy for diabetes.


Assuntos
Biflavonoides/química , Catequina/análogos & derivados , Inibidores de Glicosídeo Hidrolases/química , Proantocianidinas/química , Amido/química , alfa-Amilases/química , Biflavonoides/metabolismo , Sítios de Ligação , Catequina/química , Catequina/metabolismo , Glucose/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Hidrólise , Cinética , Maltose/química , Maltose/metabolismo , Simulação de Acoplamento Molecular , Proantocianidinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Amido/metabolismo , Especificidade por Substrato , Termodinâmica , Trissacarídeos/química , Trissacarídeos/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
14.
Anal Methods ; 13(6): 832-842, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33507177

RESUMO

Epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) are the most abundant ester catechins of green tea polyphenols (GTPs) with numerous potential bioactivities, which have wide application prospects in the fields of medicine and functional foods. In this study, a new method using macroporous resin and crystallization was established to separate and purify EGCG and ECG. Two resins with high adsorption and desorption capacities for EGCG and ECG were screened through static adsorption/desorption tests, and the LX-20B resin was selected through column chromatography due to its best separation effect. Moreover, the column separation parameters of LX-20B resin (sample amount, ethanol elution concentration, elution volume, and elution flow rate) were optimized. After resin purification, the EGCG and ECG purity were 70.08 ± 2.55% and 74.97 ± 2.66%, respectively, and the recovery rates were 68.07 ± 2.43% and 74.28 ± 2.24%, respectively. After crystallization, the EGCG purity reached 95.87 ± 0.89%, with a total recovery rate of 58.66%, and the ECG purity reached 95.55 ± 1.30%, with a total recovery rate of 62.45%. The separation efficiency of the resin showed no significant change after 6 cycles. These results show the proposed method to be a simple, eco-friendly, and cost-effective separation method for the industrial separation and purification of EGCG and ECG from GTPs.

15.
ACS Nano ; 14(12): 17565-17573, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33232122

RESUMO

It has been demonstrated that substantial electric power can be produced by a liquid-based triboelectric nanogenerator (TENG). However, the mechanisms regarding the electrification between a liquid and a solid surface remain to be extensively investigated. Here, the working mechanism of a droplet-TENG was proposed based on the study of its dynamic saturation process. Moreover, the charge-transfer mechanism at the liquid-solid interface was verified as the hybrid effects of electron transfer and ion adsorption by a simple but valid method. Thus, we proposed a model for the charge distribution at the liquid-solid interface, named Wang's hybrid layer, which involves the electron transfer, the ionization reaction, and the van der Waals force. Our work not only proves that TENG is a probe for investigating charge transfer at interface of all phases, such as solid-solid and liquid-solid, but also may have great significance to water energy harvesting and may revolutionize the traditional understanding of the liquid-solid interface used in many fields such as electrochemistry, catalysis, colloidal science, and even cell biology.

16.
J Food Biochem ; 44(12): e13536, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103275

RESUMO

There is a growing interest in screening α-amylase inhibitors from natural products for application in the development of new antidiabetic drugs or functional foods. In this study, a structure-based virtual screening was applied to rapidly identify the α-amylase inhibitors from medicine food homology (MFH) plants. Similarity search, docking & scoring were used for further filter small molecules. As a result, 21 corresponding potential α-amylase inhibitors from MFH plants were obtained. And, six polyphenol compounds (curcumin, procyanidins, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), hesperidin, and puerarin) were highlighted for further verification after a thorough assessment of the classification of hit molecules as well as docking scores. The results of the enzyme inhibition test showed that ECG, EGCG, and procyanidins had the better binding ability of α-amylase among these six polyphenols. The Ki values of ECG, EGCG, and procyanidins on α-amylase were 0.70, 1.68, and 0.24, respectively. The CD spectra results indicated that the three polyphenols can cause conformational changes in α-amylase. PRACTICAL APPLICATIONS: A structure-based virtual screening method for rapid identifying α-amylase inhibitors from MFH plants was developed successfully in this study. These findings suggested that natural polyphenols such as ECG, EGCG, and procyanidins may be a potential inhibitor of α-amylase which could be used as a nutrient supplement for the prevention of diabetes mellitus or can be further used in the development of hypoglycemic drugs. At the same time, it can provide theoretical guidance for the better utilization and development of medicine food homology plants containing these potential α-amylase inhibitors. Moreover, this work may provide ideas and references for the screening of other target protein inhibitors.


Assuntos
Plantas Comestíveis , alfa-Amilases , Hipoglicemiantes , Extratos Vegetais/farmacologia , Polifenóis
17.
Adv Mater ; 32(32): e2001466, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32608052

RESUMO

As the dominant component for precise motion measurement, angle sensors play a vital role in robotics, machine control, and personalized rehabilitation. Various forms of angle sensors have been developed and optimized over the past decades, but none of them would function without an electric power. Here, a highly sensitive triboelectric self-powered angle sensor (SPAS) exhibiting the highest resolution (2.03 nano-radian) after a comprehensive optimization is reported. In addition, the SPAS holds merits of light weight and thin thickness, which enables its extensive integrated applications with minimized energy consumption: a palletizing robotic arm equipped with the SPAS can precisely reproduce traditional Chinese calligraphy via angular data it collects. In addition, the SPAS can be assembled in a medicare brace to record the flexion/extension of joints, which may benefit personalized orthopedic recuperation. The SPAS paves a new approach for applications in the emerging fields of robotics, sensing, personalized medicare, and artificial intelligence.


Assuntos
Nanotecnologia/instrumentação , Medicina de Precisão/instrumentação , Robótica , Fontes de Energia Elétrica , Desenho de Equipamento , Equipamentos Ortopédicos , Rotação
18.
Life Sci ; 240: 117094, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760101

RESUMO

The liver serves as a central participant in immune system owing to its particular blood supply and large amounts of immune cells, in which macrophages play a significant role in liver homeostasis and disorders. Extracellular vesicles (EVs), membrane-defined nanometer-sized vesicles released by cells in a tightly controlled manner, have attracted intensive research attention as a critical vehicle for cell-cell communication in the pathophysiology of liver. Accumulating evidence has proved that extracellular vesicles are frequently involved in macrophage-mediated biological behaviors. Not only can macrophages produce and secrete EVs containing multifarious cargo themselves to exert immunomodulatory functions, but also macrophages may serve as target cells of EVs from other cells eliciting the alteration of their phenotype and function. Since both macrophage as well as EVs show pleiotropic and central effects in the progression of liver diseases, their roles in adjusting innate immunity of liver often present a crossover. In this review we are dedicated to deciphering the complex immunological network constituted by macrophages and EVs in several common liver diseases, including acute liver injury or failure and a set of chronic liver diseases such as viral hepatitis B and C, metabolic and alcoholic liver diseases, as well as hepatocellular carcinoma (HCC). From the aspect of immunology, we integrate the mechanism of EVs and hepatic macrophages in the setting of liver diseases and show a promising significance of utilizing this association into clinical immunotherapy.


Assuntos
Vesículas Extracelulares/imunologia , Hepatopatias/imunologia , Macrófagos/imunologia , Animais , Humanos , Imunomodulação
19.
ACS Nano ; 14(2): 1390-1398, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31747246

RESUMO

Fabrication of human-like intelligent tactile sensors is an intriguing challenge for developing human-machine interfaces. As inspired by somatosensory signal generation and neuroplasticity-based signal processing, intelligent neuromorphic tactile sensors with learning and memory based on the principle of a triboelectric nanogenerator are demonstrated. The tactile sensors can actively produce signals with various amplitudes on the basis of the history of pressure stimulations because of their capacity to mimic neuromorphic functions of synaptic potentiation and memory. The time over which these tactile sensors can retain the memorized information is alterable, enabling cascaded devices to have a multilevel forgetting process and to memorize a rich amount of information. Furthermore, smart fingers by using the tactile sensors are constructed to record a rich amount of information related to the fingers' current actions and previous actions. This intelligent active tactile sensor can be used as a functional element for artificial intelligence.


Assuntos
Técnicas Biossensoriais , Aprendizagem , Memória , Tato , Humanos , Tamanho da Partícula , Propriedades de Superfície
20.
Nanoscale ; 11(15): 7199-7208, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30919844

RESUMO

The invention of triboelectric nanogenerators (TENGs) provides a great opportunity for large-scale harvesting of water wave energy, which is both clean and renewable. To realize this prospect, devices with high power density and low-frequency response capability are highly desired. Here, an open-book-like triboelectric nanogenerator with enhanced power density and high responsivity to wave agitations is presented. The device efficiently integrates a large number of TENG units into an open-book-like structure in a limited space, greatly improving the volume density of the microstructured contact interface. A mechanism of force conduction chain is proposed for the first time to effectively drive multiple stacked TENG units. For a device with 50 units, the transferred charges can reach 26 µC and the short-circuit current is 0.45 mA, which should set new records among similar devices. The design of the roll-swing oscillator demonstrates a nonlinear feature in the elasticity with double energy minima, enabling a wide frequency response at low frequencies which is crucial for harvesting wave energy. When agitated by water waves, the roll-swing oscillator can respond effectively to the excitation and drive the stacked TENG units with the assistance of the force conduction chain. A high peak power density of 7.45 W m-3 and an average power density of 0.335 W m-3 in water were obtained. Such high performance of the device makes it an excellent candidate for constructing self-powered marine systems or large-scale wave energy harvesting farms to realize the blue energy dream.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...