Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29445360

RESUMO

The sheep intestinal tract is characterized by a diverse microbial ecosystem that is vital for the host to digest diet material. The importance of gut microbiota (GM) of animals has also been widely acknowledged because of its pivotal roles in the health and well-being of animals. However, there are no relevant studies on GM of small-tail Han sheep, a superior mutton variety domestic in China. In this study, the structure and distribution of gut microflora were studied by high-throughput sequencing technology. Results showed a significant difference between jejunum and cecum, jejunum, and rectum. Meanwhile, the cecum and rectum not only display higher species richness but also exhibit higher similarity of the bacterial diversity than that of the jejunum based on the results of abundance-based coverage estimator (ACE), Chao1, and Shannon indexes. Firmicutes and Bacteroidetes were the predominant phyla in cecum and rectum, while higher relative abundances of Firmicutes and Cyanobacteria were observed in jejunum. At the genus level, Bacteroidetes, Ruminococcus, Lactobacillus, Flavonifractor, and Clostridium were the dominant genera in the cecum and rectum. An obvious dynamic distribution of Lactobacillus is continuously decreasing from the jejunum to the cecum, then to the rectum, whereas the result of Bacteroides is completely inverse. In addition, this study also found many kinds of bacteria associated with the production of volatile fatty acids (VFA) colonized in the large intestine. This study is the first to investigate the distribution of intestinal flora in small-tail Han sheep. The findings provide an important indication for diagnosis and treatment of intestinal diseases in small-tail Han sheep, as well as offer a direction for the development of intestinal microecological preparations.

2.
Sci Rep ; 7: 44353, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287165

RESUMO

Subgroup J avian leucosis virus (ALV-J) generally causes neoplastic diseases, immunosuppression and subsequently increases susceptibility to secondary infection in birds. The spread of ALV-J mainly depends on congenital infection and horizontal contact. Although ALV-J infection causes enormous losses yearly in the poultry industry worldwide, effective measures to control ALV-J remain lacking. In this study, we demonstrated that Taishan Pinus massoniana pollen polysaccharide (TPPPS), a natural polysaccharide extracted from Taishan Pinus massoniana pollen, can significantly inhibit ALV-J replication in vitro by blocking viral adsorption to host cells. Electron microscopy and blocking ELISA tests revealed that TPPPS possibly blocks viral adsorption to host cells by interacting with the glycoprotein 85 protein of ALV-J. Furthermore, we artificially established a congenitally ALV-J-infected chicken model to examine the anti-viral effects of TPPPS in vivo. TPPPS significantly inhibited viral shedding and viral loads in immune organs and largely eliminated the immunosuppression caused by congenital ALV-J infection. Additionally, pre-administration of TPPPS obviously reduced the size and delayed the occurrence of tumors induced by acute oncogenic ALV-J infection. This study revealed the prominent effects and feasible mechanisms of TPPPS in inhibiting ALV-J infection, thereby providing a novel prospect to control ALV-J spread.


Assuntos
Vírus da Leucose Aviária/efeitos dos fármacos , Leucose Aviária/prevenção & controle , Pinus/química , Pólen/química , Polissacarídeos/farmacologia , Doenças das Aves Domésticas/prevenção & controle , Animais , Antivirais/farmacologia , Leucose Aviária/imunologia , Leucose Aviária/virologia , Vírus da Leucose Aviária/imunologia , Vírus da Leucose Aviária/fisiologia , Linhagem Celular , Galinhas , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Fitoterapia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Carga Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
3.
Microb Pathog ; 95: 54-61, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26975477

RESUMO

Bordetellosis, caused by Bordetella avium, continues to be an economic problem in the poultry industry of China. Vaccines with good protective ability are lacking. Thus, developing a novel vaccine against the B. avium infection is crucial. Here, we constructed a recombinant Pichia pastoris transformant capable of expressing the outer membrane protein A (ompA) of B. avium to prepare the recombinant ompA subunit vaccine and then evaluated its immune effects. To further investigate the immunomodulation effects of Taishan Pinus massoniana pollen polysaccharides (TPPPS) on this subunit vaccine, three concentrations (20, 40, and 60 mg/mL) of TPPPS were used as the adjuvants of the ompA subunit vaccine respectively. The conventional Freund's incomplete adjuvant served as the control of TPPPS. Chickens in different groups were separately vaccinated with these vaccines thrice. During the monitoring period, serum antibody titers, concentrations of serum IL-4, percentages of CD4(+) and CD8(+) T-lymphocytes in the peripheral blood, lymphocyte transformation rate, and protection rate were detected. Results showed that the pure ompA vaccine induced the production of anti-ompA antibody, the secretion of IL-4, the increase of CD4(+) T-lymphocytes counts and lymphocyte transformation rate in the peripheral blood. Moreover, the pure ompA vaccine provided a protection rate of 71.67% after the B. avium challenge. Notably, TPPPS adjuvant vaccines induced higher levels of immune responses than the pure ompA vaccine, and 60 mg/mL TPPPS adjuvant vaccine showed optimal immune effects and had a 91.67% protection rate. Our findings indicated that this recombinant B. avium ompA subunit vaccine combined with TPPPS had high immunostimulatory potential. Results provided a new perspective for B. avium subunit vaccine research.


Assuntos
Adjuvantes Imunológicos/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Bordetella/veterinária , Bordetella avium/imunologia , Pinus/química , Polissacarídeos/metabolismo , Adjuvantes Imunológicos/isolamento & purificação , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Infecções por Bordetella/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Galinhas , China , Portadores de Fármacos , Interleucina-4/sangue , Pichia/genética , Pólen/química , Polissacarídeos/isolamento & purificação , Doenças das Aves Domésticas/prevenção & controle , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
4.
Int Immunopharmacol ; 28(2): 952-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26337750

RESUMO

Dermonecrotic toxin (DNT) produced by Bordetella bronchiseptica (B. bronchiseptica) can cause clinical turbinate atrophy in swine and induce dermonecrotic lesions in model mice. We know that the N-terminal of DNT molecule contains the receptor-binding domain, which facilitates binding to the target cells. However, we do not know whether this domain has sufficient immunogenicity to resist B. bronchiseptica damage and thereby to develop a subunit vaccine for the swine industry. In this study, we prokaryotically expressed the recombinant N-terminal of DNT from B. bronchiseptica (named DNT-N) and prepared it for the subunit vaccine to evaluate its immunogenicity. Taishan Pinus massoniana pollen polysaccharide (TPPPS), a known immunomodulator, was used as the adjuvant to examine its immune-conditioning effects. At 49 d after inoculation, 10 mice from each group were challenged with B. bronchiseptica, and another 10 mice were intradermally challenged with native DNT, to examine the protection imparted by the vaccines. The immune parameters (T-lymphocyte counts, cytokine secretions, serum antibody titers, and survival rates) and skin lesions were determined. The results showed that pure DNT-N vaccine significantly induced immune responses and had limited ability to resist the B. bronchiseptica and DNT challenge, whereas the mice administered with TPPPS or Freund's incomplete adjuvant vaccine could induce higher levels of the above immune parameters. Remarkably, the DNT-N vaccine combined with TPPPS adjuvant protected the mice effectively to prevent B. bronchiseptica infection. Our findings indicated that DNT-N has potential for development as an effective subunit vaccine to counteract the damage of B. bronchiseptica infection, especially when used conjointly with TPPPS.


Assuntos
Atrofia/prevenção & controle , Infecções por Bordetella/imunologia , Bordetella bronchiseptica/imunologia , Transglutaminases/metabolismo , Conchas Nasais/patologia , Fatores de Virulência de Bordetella/metabolismo , Animais , Atrofia/etiologia , Vacinas Bacterianas/administração & dosagem , Infecções por Bordetella/complicações , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Pinus , Pólen/imunologia , Polissacarídeos/imunologia , Suínos , Transglutaminases/genética , Transglutaminases/imunologia , Vacinas Sintéticas/administração & dosagem , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/imunologia
5.
Rev Sci Instrum ; 86(1): 013504, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25638083

RESUMO

The double-probe has been used successfully in radio-frequency discharges. However, in low-frequency discharges, the double-probe I-V curve is so much seriously distorted by the strong plasma potential fluctuations that the I-V curve may lead to a large estimate error of plasma parameters. To suppress the distortion, we investigate the double-probe characteristics in low-frequency gas discharge based on an equivalent circuit model, taking both the plasma sheath and probe circuit into account. We discovered that there are two primary interferences to the I-V curve distortion: the voltage fluctuation between two probe tips caused by the filter difference voltage and the current peak at the negative edge of the plasma potential. Consequently, we propose a modified passive filter to reduce the two types of interference simultaneously. Experiments are conducted in a glow-discharge plasma (f = 30 kHz) to test the performance of the improved double probe. The results show that the electron density error is reduced from more than 100% to less than 10%. The proposed improved method is also suitable in cases where intensive potential fluctuations exist.

6.
Protein Expr Purif ; 105: 33-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25317910

RESUMO

Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0µg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Proteínas Recombinantes/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Vacinas Bacterianas/genética , Vacinas Bacterianas/metabolismo , Galinhas , Pichia/genética , Pichia/metabolismo , Infecções por Proteus/imunologia , Infecções por Proteus/microbiologia , Infecções por Proteus/prevenção & controle , Proteus mirabilis/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/metabolismo
7.
Rev Sci Instrum ; 84(10): 104701, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24182138

RESUMO

A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10(9) to 2.5 × 10(11) cm(-3). An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...