Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Glob Heart ; 18(1): 17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968302

RESUMO

Poor adherence to the prescribed antihypertensive therapy is an understated public health problem and is one of the main causes of the high prevalence of uncontrolled hypertension in sub-Saharan Africa. Medication adherence is vital for the effectiveness of antihypertensive treatment and is key to ameliorating the clinical outcomes in hypertensive patients. However, it has often been ignored because the current methods used to assess medication adherence are not reliable, limiting their utilization in clinical practice. Therefore, the identification of the most accurate and clinically feasible method for measuring medication adherence is critical for tailoring effective strategies to improve medication adherence and consequently achieve blood pressure goals. This review not only explores various available methods for estimating medication adherence but also proposes therapeutic drug monitoring in hair for the measurement of medication adherence to the antihypertensive medication period.


Assuntos
Anti-Hipertensivos , Hipertensão , Humanos , Anti-Hipertensivos/uso terapêutico , Anti-Hipertensivos/farmacologia , Análise do Cabelo , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Pressão Sanguínea , Adesão à Medicação
2.
Front Genet ; 13: 937639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938016

RESUMO

Aims: The current study sought to investigate the association between the methylenetetrahydrofolate reductase (MTHFR) variant (rs1801133) and the risk of developing hypertension (HTN) in an indigenous South African population. Methods: A total of 442 participants (hypertensive, n = 279 and non-hypertensive, n = 163) from the indigenous tribe residing in Mthatha, Eastern Cape (South Africa) were recruited. HTN was defined as a systolic (SBP) and diastolic blood pressure (DBP) of ≥130/80 mmHg following American Heart Association guidelines. The genotyping of MTHFR (rs1801133) was assessed using MassARRAY® System. Thereafter, the association between rs1801133 in various genetic models and HTN was determined by logistic regression model analysis. Furthermore, the interaction between rs1801133 and selected risk factors on HTN was performed using the open-source multifactor dimensionality reduction (MDR). Results: The low frequency of the T allele (5%) was also observed when compared with the C allele (95%) in both cases and controls. After adjusting for confounding factors (gender, smoking status, BMI, and blood glucose levels), there were no significant associations were observed between rs1801133 and the risk of HTN in all genetic models: genotypic (OR 0.75, 95% CI 0.29-1.95, p = 0.56), dominant (OR 0.86, 95% CI 0.35-2.16, p = 0.75), co-dominant (OR 1.33, 95% CI 0.51-3.48, p = 0.55) and allelic (OR 0.80, 95% CI 0.49-1.62, p = 0.70) in logistic regression analysis. However, a significant interaction was reported among rs1801133, age, and gender (p < 0.0001) with the risk of HTN. Conclusion: The present study reports on the lack of association between MTHFR (rs1801133) and the risk of HTN in an indigenous South African tribe. However, an interaction between gender, age, and rs1801133 was observed. Thus, future studies with a large sample size are required to further validate these findings.

3.
J Infect Dis ; 226(8): 1418-1427, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36017801

RESUMO

This study was one of the first to detect Omicron sublineages BA.4 and BA.5 in wastewater from South Africa. Spearman rank correlation analysis confirmed a strong positive correlation between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA in wastewater samples and clinical cases (r = 0.7749, P < .0001). SARS-CoV-2 viral load detected in wastewater, resulting from the Delta-driven third wave, was significantly higher than during the Omicron-driven fourth wave. Whole-genome sequencing confirmed presence of Omicron lineage defining mutations in wastewater with the first occurrence reported 23 November 2021 (BA.1 predominant). The variant spread rapidly, with prevalence of Omicron-positive wastewater samples rising to >80% by 10 January 2022 with BA.2 as the predominant sublineage by 10 March 2022, whilst on 18 April 2022 BA.4 and BA.5 were detected in selected wastewater sites. These findings demonstrate the value of wastewater-based epidemiology to monitor the spatiotemporal spread and potential origin of new Omicron sublineages.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Prevalência , RNA Viral/genética , SARS-CoV-2/genética , África do Sul/epidemiologia , Águas Residuárias
4.
Genes (Basel) ; 13(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35456437

RESUMO

In this review, we have gathered and analyzed the available genetic evidence on the association between the methylenetetrahydrofolate reductase gene (MTHFR), rs1801133 and the risk of Hypertension (HTN) in African populations, which was further compared to the global data evidence. This review was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol and Human Genome Epidemiology Network (HuGENet) guidelines. Literature was retrieved through major search databases, including PubMed, Scopus, Web of Science, and African Journal Online. We identified 64 potential studies, of which 4 studies were from the African continent and 60 studies were reported globally. Among the studies conducted in Africa, only two (n = 2) reported a significant association between the MTHFR (rs1801133) and the risk of developing HTN. Only one (n = 1) study population was purely composed of black Africans, while others were of other ethnicities. Among studies conducted in other continents (n = 60), forty-seven (n = 47) studies reported a positive association between MTHFR (rs1801133) and the risk of developing HTN, whereas the remaining studies (n = 14) did not show a significant association. Available literature suggests an apparent association between rs1801133 and HTN in global regions; however, such information is still scarce in Africa, especially in the black African population.


Assuntos
Hipertensão , Metilenotetra-Hidrofolato Redutase (NADPH2) , População Negra/genética , Predisposição Genética para Doença , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
5.
Sci Rep ; 12(1): 1182, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064174

RESUMO

This study uses wastewater-based epidemiology (WBE) to rapidly and, through targeted surveillance, track the geographical distribution of SARS-CoV-2 variants of concern (Alpha, Beta and Delta) within 24 wastewater treatment plants (WWTPs) in the Western Cape of South Africa. Information obtained was used to identify the circulating variant of concern (VOC) within a population and retrospectively trace when the predominant variant was introduced. Genotyping analysis of SARS-CoV-2 showed that 50% of wastewater samples harbored signature mutations linked to the Beta variant before the third wave, with the Delta variant absent within the population. Over time, the prevalence of the beta variant decreased steadily. The onset of the third wave resulted in the Delta variant becoming the predominant variant, with a 100% prevalence supporting the theory that the Delta variant was driving the third wave. In silico molecular docking analysis showed that the signature mutations of the Delta variant increased binding to host proteins, suggesting a possible molecular mechanism that increased viral infectivity of the Delta variant.


Assuntos
COVID-19 , SARS-CoV-2/genética , Vigilância Epidemiológica Baseada em Águas Residuárias , COVID-19/epidemiologia , COVID-19/genética , Humanos , África do Sul/epidemiologia
6.
Molecules ; 26(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34885888

RESUMO

Although numerous studies have demonstrated the biological and multifaceted nature of dimethyl sulfoxide (DMSO) across different in vitro models, the direct effect of "non-toxic" low DMSO doses on cardiac and cancer cells has not been clearly explored. In the present study, H9c2 cardiomyoblasts and MCF-7 breast cancer cells were treated with varying concentrations of DMSO (0.001-3.7%) for 6 days. Here, DMSO doses < 0.5% enhanced the cardiomyoblasts respiratory control ratio and cellular viability relative to the control cells. However, 3.7% DMSO exposure enhanced the rate of apoptosis, which was driven by mitochondrial dysfunction and oxidative stress in the cardiomyoblasts. Additionally, in the cancer cells, DMSO (≥0.009) led to a reduction in the cell's maximal respiratory capacity and ATP-linked respiration and turnover. As a result, the reduced bioenergetics accelerated ROS production whilst increasing early and late apoptosis in these cells. Surprisingly, 0.001% DMSO exposure led to a significant increase in the cancer cells proliferative activity. The latter, therefore, suggests that the use of DMSO, as a solvent or therapeutic compound, should be applied with caution in the cancer cells. Paradoxically, in the cardiomyoblasts, the application of DMSO (≤0.5%) demonstrated no cytotoxic or overt therapeutic benefits.


Assuntos
Apoptose/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Genes (Basel) ; 12(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917487

RESUMO

Hypertension (HTN) is a persistent public health problem affecting approximately 1.3 billion individuals globally. Treatment-resistant hypertension (TRH) is defined as high blood pressure (BP) in a hypertensive patient that remains above goal despite use of ≥3 antihypertensive agents of different classes including a diuretic. Despite a plethora of treatment options available, only 31.0% of individuals have their HTN controlled. Interindividual genetic variability to drug response might explain this disappointing outcome because of genetic polymorphisms. Additionally, the poor knowledge of pathophysiological mechanisms underlying hypertensive disease and the long-term interaction of antihypertensive drugs with blood pressure control mechanisms further aggravates the problem. Furthermore, in Africa, there is a paucity of pharmacogenomic data on the treatment of resistant hypertension. Therefore, identification of genetic signals having the potential to predict the response of a drug for a given individual in an African population has been the subject of intensive investigation. In this review, we aim to systematically extract and discuss African evidence on the genetic variation, and pharmacogenomics towards the treatment of HTN. Furthermore, in silico methods are utilized to elucidate biological processes that will aid in identifying novel drug targets for the treatment of resistant hypertension in an African population. To provide an expanded view of genetic variants associated with the development of HTN, this study was performed using publicly available databases such as PubMed, Scopus, Web of Science, African Journal Online, PharmGKB searching for relevant papers between 1984 and 2020. A total of 2784 articles were reviewed, and only 42 studies were included following the inclusion criteria. Twenty studies reported associations with HTN and genes such as AGT (rs699), ACE (rs1799752), NOS3 (rs1799983), MTHFR (rs1801133), AGTR1 (rs5186), while twenty-two studies did not show any association within the African population. Thereafter, an in silico predictive approach was utilized to identify several genes including CLCNKB, CYPB11B2, SH2B2, STK9, and TBX5 which may act as potential drug targets because they are involved in pathways known to influence blood pressure. Next, co-expressed genes were identified as they are controlled by the same transcriptional regulatory program and may potentially be more effective as multiple drug targets in the treatment regimens for HTN. Genes belonging to the co-expressed gene cluster, ACE, AGT, AGTR1, AGTR2, and NOS3 as well as CSK and ADRG1 showed enrichment of G-protein-coupled receptor activity, the classical targets of drug discovery, which mediate cellular signaling processes. The latter is of importance, as the targeting of co-regulatory gene clusters will allow for the development of more effective HTN drug targets that could decrease the prevalence of both controlled and TRH.


Assuntos
Anti-Hipertensivos/uso terapêutico , População Negra/genética , Biologia Computacional/métodos , Predisposição Genética para Doença , Hipertensão/epidemiologia , Farmacogenética , Polimorfismo Genético , África/epidemiologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Fatores de Risco
8.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287388

RESUMO

Holamine and funtumine, steroidal alkaloids with strong and diverse pharmacological activities are commonly found in the Apocynaceae family of Holarrhena. The selective anti-proliferative and cell cycle arrest effects of holamine and funtumine on cancer cells have been previously reported. The present study evaluated the anti-proliferative mechanism of action of these two steroidal alkaloids on cancer cell lines (HT-29, MCF-7 and HeLa) by exploring the mitochondrial depolarization effects, reactive oxygen species (ROS) induction, apoptosis, F-actin perturbation, and inhibition of topoisomerase-I. The apoptosis-inducing effects of the compounds were studied by flow cytometry using the APOPercentageTM dye and Caspase-3/7 Glo assay kit. The two compounds showed a significantly greater cytotoxicity in cancer cells compared to non-cancer (normal) fibroblasts. The observed antiproliferative effects of the two alkaloids presumably are facilitated through the stimulation of apoptosis. The apoptotic effect was elicited through the modulation of mitochondrial function, elevated ROS production, and caspase-3/7 activation. Both compounds also induced F-actin disorganization and inhibited topoisomerase-I activity. Although holamine and funtumine appear to have translational potential for the development of novel anticancer agents, further mechanistic and molecular studies are recommended to fully understand their anticancer effects.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HT29 , Células HeLa , Holarrhena/química , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Molecules ; 25(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003351

RESUMO

Scientists have demonstrated the potential of plant materials as 'green' reducing and stabilizing agents for the synthesis of gold nanoparticles (AuNPs) and opened new ecofriendly horizons to develop effective and less harmful treatment strategies. The current study demonstrated the use of Terminalia mantaly (TM) extracts to synthesize AuNPs with enhanced cytotoxic effects. The TM-AuNPs were synthesized at 25 and 70 °C using water (WTM) and methanolic (MTM) extracts of the leaf, root and stem/bark parts of the plant. The TM-AuNPs were characterized using UV-visible spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy, energy dispersive X-ray (EDX), selection area electron diffraction (SAED) and Fourier transform infrared (FTIR) spectroscopy. Majority of the TM-AuNPs were spherical with a mean diameter between 22.5 and 43 nm and were also crystalline in nature. The cytotoxic effects of TM-AuNPs were investigated in cancer (Caco-2, MCF-7 and HepG2) and non-cancer (KMST-6) cell lines using the MTT assay. While the plant extracts showed some cytotoxicity towards the cancer cells, some of the TM-AuNPs were even more toxic to the cells. The IC50 values (concentrations of the AuNPs that inhibited 50% cell growth) as low as 0.18 µg/mL were found for TM-AuNPs synthesized using the root extract of the plant. Moreover, some of the TM-AuNPs demonstrated selective toxicity towards specific cancer cell types. The study demonstrates the potential of TM extracts to produce AuNPs and describe the optimal conditions for AuNPs using TM extracts. The toxicity of some the TM-AuNPs can possibly be explored in the future as an antitumor treatment.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Terminalia/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Difusão Dinâmica da Luz , Química Verde , Humanos , Concentração Inibidora 50 , Nanopartículas Metálicas/ultraestrutura , Compostos Fitoquímicos/farmacologia , Espectrofotometria Ultravioleta
10.
Adv Wound Care (New Rochelle) ; 8(12): 655-670, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827980

RESUMO

Significance: Keloids are benign fibro-proliferative raised dermal lesions that spread beyond the original borders of the wound, continue to grow, rarely regress, and are the most common in pigmented individuals after an abnormal wound healing response. The current treatment failure and respective challenges involved highlighting the underlying issue that the etiopathogenesis of keloids is still not well understood. Disease models are required to better understand the disease pathogenesis. It is not possible to establish keloids in animals because of the uniqueness of this disease to human skin. To address this challenge, along these lines, non-animal reproducible models are vital in investigating molecular mechanisms of keloid pathogenesis and therapeutics development. Recent Advances: Various non-animal models have been developed to better understand the molecular mechanisms involved in keloid scarring and aid in identifying and evaluating the therapeutic potential of novel drug candidates. In this scenario, the current review aims at describing in vitro monocultures, co-cultures, organotypic cultures, and ex vivo whole skin keloid tissue organ culture models. Critical Issues and Future Directions: Current treatment options for keloids are far from securing a cure or preventing disease recurrence. Identifying universally accepted effective therapy for keloids has been hampered by the absence of appropriate disease model systems. Animal models do not accurately mimic the disease, thus non-animal model systems are pivotal in keloid research. The use of these models is essential not only for a better understanding of disease biology but also for identifying and evaluating novel drug targets.

11.
Pharm Res ; 36(1): 8, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30411187

RESUMO

Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a deadly infectious disease. The thin pipeline of new drugs for TB, the ineffectiveness in adults of the only vaccine available, i.e. the Bacillus Calmette-Guerin vaccine, and increasing global antimicrobial resistance, has reinvigorated interest in immunotherapies. Nanoparticles (NPs) potentiate the effect of immune modulating compounds (IMC), enabling cell targeting, improved transfection of antigens, enhanced compound stability and provide opportunities for synergistic action, via delivery of multiple IMCs. In this review we describe work performed in the application of NPs towards achieving immune modulation for TB treatment and vaccination. Firstly, we present a comprehensive review of M. tuberculosis and how the bacterium modulates the host immune system. We find that current work suggest great promise of NP based immunotherapeutics as novel treatments and vaccination systems. There is need to intensify research efforts in this field, and rationally design novel NP immunotherapeutics based on current knowledge of the mycobacteriology and immune escape mechanisms employed by M. tuberculosis.


Assuntos
Sistema Imunitário , Mycobacterium tuberculosis , Animais , Interações Hospedeiro-Patógeno , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/microbiologia , Imunoterapia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Nanopartículas , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinação
12.
J Med Primatol ; 45(4): 189-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325422

RESUMO

BACKGROUND: Non-ketotic hyperglycinaemia (NKH) is an autosomal recessive inborn error of glycine metabolism characterized by accumulation of glycine in body fluids and various neurological symptoms. METHODS: This study describes the first screening of NKH in cataract captive-bred vervet monkeys (Chlorocebus aethiops). Glycine dehydrogenase (GLDC), aminomethyltransferase (AMT) and glycine cleavage system H protein (GCSH) were prioritized. RESULTS: Mutation analysis of the complete coding sequence of GLDC and AMT revealed six novel single-base substitutions, of which three were non-synonymous missense and three were silent nucleotide changes. CONCLUSION: Although deleterious effects of the three amino acid substitutions were not evaluated, one substitution of GLDC gene (S44R) could be disease-causing because of its drastic amino acid change, affecting amino acids conserved in different primate species. This study confirms the diagnosis of NKH for the first time in vervet monkeys with cataracts.


Assuntos
Aminometiltransferase/genética , Catarata/veterinária , Chlorocebus aethiops , Proteína H do Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase/genética , Hiperglicinemia não Cetótica/veterinária , Doenças dos Macacos/genética , Mutação Puntual , Sequência de Aminoácidos , Aminometiltransferase/química , Aminometiltransferase/metabolismo , Animais , Catarata/genética , Proteína H do Complexo Glicina Descarboxilase/química , Proteína H do Complexo Glicina Descarboxilase/metabolismo , Glicina Desidrogenase/química , Glicina Desidrogenase/metabolismo , Hiperglicinemia não Cetótica/genética , Mutação de Sentido Incorreto
13.
J Int AIDS Soc ; 17(4 Suppl 3): 19707, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25397455

RESUMO

INTRODUCTION: HIV/AIDS is now a global epidemic that has become the leading infectious killer of adults worldwide. Although antiretroviral (ARV) therapy has dramatically improved the quality of life and increased the life expectancy of those infected with HIV but frequency of dosing and drug toxicity as well as the development of viral resistance pose additional limitations. The rapidly expanding field of nanotechnology has vast potential to radically advance the treatment and prevention of HIV/AIDS. Nanoparticles can provide improved drug delivery, by virtue of their small size, robustness, safety, multimodality or multifunctionality. AIMS AND OBJECTIVES: Since HIV primarily infects CD4+ cells; we aim to use CD4 as a selectable target to deliver a pro-apoptotic protein to HIV-infected cells using nanoparticles as carriers. The aim of study was to develop a nanotechnology-based death inducing delivery system for the destruction of CD4+HIV infected cells through the activation of caspase-3. METHODOLOGY: A modified caspase-3 protein (Mut-3) was engineered, which is cleavable only by HIV-1 protease. Mut-3 can activate apoptosis in the presence of HIV-1 protease, consequently killing HIV-positive cells. Mut-3 protein was conjugated to gold nanoparticles together with a CD4-targeting peptide. The efficacy of the gold nanoparticles was tested on CHO cells that were genetically engineered to express GFP labelled CD4 and HIV-1 protease. RESULTS: Mut-3 was expressed in bacterial cells and purified. CHO cells that stably over express CD4-GFP and HIV-1 protease were selected using Fluorescence Activated Cell Sorting. Dose response cell culture experiments showed that gold nanoparticles without Mut-3 and CD4-targeting peptide did not induce cell death in CHO cells, while gold nanoparticles that was conjugated with Mut-3 and the CD4-targeting peptide rapidly induced cell death in CHO cells. CONCLUSIONS: Our results suggest that gold nanoparticles conjugated with Mut-3 and a CD4-targeting peptide could potentially induce apoptosis in HIV-infected cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...