Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 462: 141000, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241686

RESUMO

Food waste, accounting for about one-third of the total global food resources wasted each year, is a substantial challenge to global sustainability, contributing to adverse environmental impacts. The utilization of food waste as a valuable source for bioactive extraction can be facilitated through the application of DES (Deep Eutectic Solvents). Acknowledging the significant need to tackle this issue, the United Nations integrated food waste management into its Sustainable Development Goals, hence, the present review explores the role of DES in bioactive compounds extraction from food waste. Various extraction processes using the DES system are thoroughly studied and the application of bioactive components as antioxidants, antimicrobials, flavourings, nutraceuticals, functional ingredients, additives, and preservatives is investigated. Most importantly, regulatory considerations and safety aspects of DES in food applications are discussed in-depth along with consumer perception and acceptance of DES in the food sector. The key hypothesis of the review is to evaluate emerging DES systems for their efficiency in bioactive extraction technologies and various food applications. Overall, this review provides a comprehensive understanding of utilizing DES for synthesizing valuable food waste-derived bioactive components, offering a sustainable approach to waste management and the development of high-value products.


Assuntos
Solventes Eutéticos Profundos , Desenvolvimento Sustentável , Solventes Eutéticos Profundos/química , Resíduos/análise , Gerenciamento de Resíduos/métodos , Humanos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Perda e Desperdício de Alimentos
2.
Food Chem ; 463(Pt 4): 141483, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369604

RESUMO

In recent years, there has been a notable surge in the development and adoption of edible algae protein-based sustainable food packaging, which presents a promising alternative to traditional materials due to its biodegradability, renewability, and minimal environmental impact. Hence, this review aims to emphasize the sources, cultivation, and downstream potential of algal protein and protein complexes. Moreover, it comprehensively examines the advancements in utilizing protein complexes for smart and active packaging applications, while also addressing the challenges that must be overcome for the widespread commercial adoption of algal proteins to meet industry 4.0. The review revealed that the diversity of algae species and their sustainable cultivation methods offers a promising alternative to traditional protein sources. Being vegan source with higher photosynthetic conversion efficiency and reduced growth cycle has permitted the proposition of algae as proteins of the future. The unique combination of techno-functional combined with bio-functional properties such as antioxidant, anti-inflammatory and antimicrobial response have captured the sustainable groups to invest considerable research and promote the innovations in algal proteins. Food packaging research has increasingly benefited by the excellent gas barrier property and superior mechanical strength of algal proteins either stand alone or in synergy with other biodegradable polymers. Advanced packaging functionality such as freshness monitoring and active preservation techniques has been explored and needs considerable characterization for commercial advancement. Overall, while algal proteins show promising downstream potential in various industries aligned with Industry 4.0 principles, their broader adoption hinges on overcoming these barriers through continued innovation and strategic development.

3.
Food Chem Toxicol ; 193: 115038, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384093

RESUMO

Emerging micropollutants, originating from diverse sources, including pharmaceutical, pesticides, and industrial effluents, are a serious environmental concern. Their presence in natural water bodies has negative effects on ecosystems and human health. To address this issue, the importance of a source-controlled approach has grown, highlighting the use of advanced technologies such as oxidation processes, membrane filtration, and adsorption to prevent micropollutants from entering the environment. Therefore, this review provides a comprehensive overview of emerging micropollutants, their analytical detection methods, and their environmental impacts, with a focus on aquatic ecosystems, human health, and terrestrial environments. It also highlights the importance of using a source-controlled approach and provides insights into the benefits and drawbacks of this strategy. The primary micropollutants identified in this review were erythromycin, ibuprofen, and triclocarban, originating from the pharmaceutical industries for their use as antibiotics, analgesic, and antibacterial drugs. The primary analytical methods used for detection involved hybrid techniques that integrate chromatography with spectroscopy. Thus, this review emphasizes the source-controlled approach's benefits and drawbacks, focusing on emerging micropollutants, their detection, and impacts on ecosystems and health.

4.
Int J Biol Macromol ; 282(Pt 1): 136522, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39419143

RESUMO

This study aimed to evaluate the extraction efficiency of mucilage from Cordia dichotoma fruits using various aqueous extraction methods, including microwave-assisted water extraction (MWE), hot-water extraction (HWE), and cold-water extraction (CWE). Different analytical techniques were employed to characterize the Cordia dichotoma mucilage (CDM). Additionally, the functional properties, anti-microbial, anti-inflammatory, and dye reduction potential of CDM were assessed. The results indicated a significantly (p < 0.05) higher yield of CDM (13.44 ± 0.94 %) using MWE compared to HWE (12.08 ± 0.82 %) and CWE (7.59 ± 0.73 %). The optimal extraction condition was utilized for the spray-drying process, yielding a spray-dried mucilage powder (SDMP) with a yield of 9.52 ± 1.27 %. The presence of galactose and arabinose as major sugar and functional groups such as OH, COOH, CH, and NH from proteins, uronic acids, and sugars were identified. CDM particles exhibited an irregular morphology and demonstrated thermal stability, with maximum weight loss occurring between 221.83 and 478.66 °C. The particle size of CDM was 681.16 ± 2.18 nm with a zeta potential of -21.46 ± 1.72 mV. Rheological analysis revealed that CDM exhibited shear-thinning behavior. Furthermore, CDM displayed inherent biological activities, including antimicrobial and anti-inflammatory properties. The dye reduction potential of CDM was evidenced by an 88.67 % degradation of indigo carmine dye. In summary, this study provides insights into the cost-effective extraction methods for CDM and its potential utilization as an eco-friendly material for dye reduction.

5.
Food Chem ; 463(Pt 3): 141348, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39340911

RESUMO

Antioxidants are crucial in reducing oxidative stress and enhancing health, necessitating precise quantification in food matrices. Advanced techniques such as biosensors and nanosensors offer high sensitivity and specificity, enabling real-time monitoring and accurate antioxidant quantification in complex food systems. These technologies herald a new era in food analysis, improving food quality and safety through sophisticated detection methods. Their application facilitates comprehensive antioxidant profiling, driving innovation in food technology to meet the rising demand for nutritional optimization and food integrity. These are complemented by electrochemical techniques, spectroscopy, and chromatography. Electrochemical methods provide rapid response times, spectroscopy offers versatile chemical composition analysis, and chromatography excels in precise separation and quantification. Collectively, these methodologies establish a comprehensive framework for food analysis, essential for improving food quality, safety, and nutritional value. Future research should aim to refine these analytical methods, promising significant advancements in food and nutritional science.

6.
Int J Biol Macromol ; 279(Pt 4): 135583, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39270899

RESUMO

The main goal of emerging food-packaging technologies is to address environmental issues and minimize their impact, while also guaranteeing food quality and safety for consumers. Bio-based polymers have drawn significant interest as a means to reduce the usage and environmental impact of petroleum-derived polymeric products. Therefore, this current review highlights on the biopolymer blends, various biodegradable bio-nanocomposites materials, and their synthesis and characterization techniques recently used in the smart food packaging industry. In addition, some insights on potential challenges as well as possibilities in future smart food packaging applications are thoroughly explored. Nanocomposite packaging materials derived from biopolymers have the highest potential for use in improved smart food packaging that possesses bio-functional properties. Nanomaterials are utilized for improving the thermal, mechanical, and gas barrier attributes of bio-based polymers while maintaining their biodegradable and non-toxic qualities. The packaging films that were developed exhibited enhanced barrier qualities against carbon dioxide, oxygen, and water vapour. Additionally, they demonstrated better mechanical strength, thermal stability, and antibacterial activity. More research is needed to develop and use smart food packaging materials based on bio-nanocomposites on a worldwide scale, while removing plastic packaging.


Assuntos
Embalagem de Alimentos , Nanocompostos , Embalagem de Alimentos/métodos , Nanocompostos/química , Biopolímeros/química
7.
Microbiol Res ; 286: 127780, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970905

RESUMO

In recent years, research into the complex interactions and crosstalk between plants and their associated microbiota, collectively known as the plant microbiome has revealed the pivotal role of microbial communities for promoting plant growth and health. Plants have evolved intricate relationships with a diverse array of microorganisms inhabiting their roots, leaves, and other plant tissues. This microbiota mainly includes bacteria, archaea, fungi, protozoans, and viruses, forming a dynamic and interconnected network within and around the plant. Through mutualistic or cooperative interactions, these microbes contribute to various aspects of plant health and development. The direct mechanisms of the plant microbiome include the enhancement of plant growth and development through nutrient acquisition. Microbes have the ability to solubilize essential minerals, fix atmospheric nitrogen, and convert organic matter into accessible forms, thereby augmenting the nutrient pool available to the plant. Additionally, the microbiome helps plants to withstand biotic and abiotic stresses, such as pathogen attacks and adverse environmental conditions, by priming the plant's immune responses, antagonizing phytopathogens, and improving stress tolerance. Furthermore, the plant microbiome plays a vital role in phytohormone regulation, facilitating hormonal balance within the plant. This regulation influences various growth processes, including root development, flowering, and fruiting. Microbial communities can also produce secondary metabolites, which directly or indirectly promote plant growth, development, and health. Understanding the functional potential of the plant microbiome has led to innovative agricultural practices, such as microbiome-based biofertilizers and biopesticides, which harness the power of beneficial microorganisms to enhance crop yields while reducing the dependency on chemical inputs. In the present review, we discuss and highlight research gaps regarding the plant microbiome and how the plant microbiome can be used as a source of single and synthetic bioinoculants for plant growth and health.


Assuntos
Agricultura , Bactérias , Microbiota , Desenvolvimento Vegetal , Plantas , Microbiota/fisiologia , Plantas/microbiologia , Agricultura/métodos , Bactérias/metabolismo , Bactérias/classificação , Raízes de Plantas/microbiologia , Simbiose , Fungos/metabolismo , Fungos/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Microbiologia do Solo
8.
Food Chem ; 460(Pt 1): 140545, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047488

RESUMO

Utilizing plant-based sources for the preservation of fresh and fresh-cut fruits and vegetables offers a natural and chemical-free method. However, the inherent instability of plant bioactive compounds underscores the necessity for encapsulation techniques. Essential oil-based nanoemulsions (EO-NEs) stand out among food additives due to their distinctive antibacterial and antioxidant properties. This review delves into recent advancements in the application of EO-NEs as edible coatings for fresh and fresh-cut produce. It examines the efficacy of EO-NEs in enhancing the preservation of fruits and vegetables by harnessing their bioactive compounds for antibacterial, antifungal, and antioxidant activities. Additionally, the review accentuates the efficacy of EO-NEs in inhibiting biofilm formation on fruits and vegetables. It reveals that coatings derived from plant-source nanoemulsions exhibit exceptional mechanical, optical, and microstructural qualities, as well as superior water barrier properties. In contrast to conventional emulsions, nanocoatings facilitate the gradual and controlled release of antimicrobial and antioxidant compounds during food storage. This feature enhances bioactivity, extends shelf life, and enhances the nutritional profile of products. By preserving and protecting shelf stability, EO-NEs contribute to the maintenance of vegetable freshness. Nonetheless, ensuring their commercial viability necessitates additional research into the toxicity of EO-based nanoemulsions.


Assuntos
Emulsões , Conservação de Alimentos , Frutas , Óleos Voláteis , Verduras , Verduras/química , Frutas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Emulsões/química , Antioxidantes/química , Antioxidantes/farmacologia , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química , Nanopartículas/química
9.
Environ Sci Pollut Res Int ; 31(35): 48725-48741, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037623

RESUMO

The intelligent predictive and optimized wastewater treatment plant method represents a ground-breaking shift in how we manage wastewater. By capitalizing on data-driven predictive modeling, automation, and optimization strategies, it introduces a comprehensive framework designed to enhance the efficiency and sustainability of wastewater treatment operations. This methodology encompasses various essential phases, including data gathering and training, the integration of innovative computational models such as Chimp-based GoogLeNet (CbG), data processing, and performance prediction, all while fine-tuning operational parameters. The designed model is a hybrid of the Chimp optimization algorithm and GoogLeNet. The GoogLeNet is a type of deep convolutional architecture, and the Chimp optimization is one of the bio-inspired optimization models based on chimpanzee behavior. It optimizes the operational parameters, such as pH, dosage rate, effluent quality, and energy consumption, of the wastewater treatment plant, by fixing the optimal settings in the GoogLeNet. The designed model includes the process such as pre-processing and feature analysis for the effective prediction of the operation parameters and its optimization. Notably, this innovative approach provides several key advantages, including cost reduction in operations, improved environmental outcomes, and more effective resource management. Through continuous adaptation and refinement, this methodology not only optimizes wastewater treatment plant performance but also effectively tackles evolving environmental challenges while conserving resources. It represents a significant step forward in the quest for efficient and sustainable wastewater treatment practices. The RMSE, MAE, MAPE, and R2 scores for the suggested technique are 1.103, 0.233, 0.012, and 0.002. Also, the model has shown that power usage decreased to about 1.4%, while greenhouse gas emissions have significantly decreased to 0.12% than the existing techniques.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Algoritmos , Purificação da Água/métodos
10.
Int J Biol Macromol ; 273(Pt 2): 133090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878920

RESUMO

Biodegradable and sustainable food packaging (FP) materials have gained immense global importance to reduce plastic pollution and environmental impact. Therefore, this review focused on the recent advances in biopolymers based on cellulose derivatives for FP applications. Cellulose, an abundant and renewable biopolymer, and its various derivatives, namely cellulose acetate, cellulose sulphate, nanocellulose, carboxymethyl cellulose, and methylcellulose, are explored as promising substitutes for conventional plastic in FP. These reviews focused on the production, modification processes, and properties of cellulose derivatives and highlighted their potential for their application in FP. Finally, we reviewed the effects of incorporating cellulose derivatives into film in various aspects of packaging properties, including barrier, mechanical, thermal, preservation aspects, antimicrobial, and antioxidant properties. Overall, the findings suggest that cellulose derivatives have the potential to replace conventional plastics in food packaging applications. This can contribute to reducing plastic pollution and lessening the environmental impact of food packaging materials. The review likely provides insights into the current state of research and development in this field and underscores the significance of sustainable food packaging solutions.


Assuntos
Celulose , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Celulose/química , Biopolímeros/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
11.
Food Sci Nutr ; 12(6): 3920-3934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873482

RESUMO

Lecithin is constituted of a glycerophospholipid mixture and is abundantly used as an emulsifying agent in various food applications including chocolate production. However, overconsumption of lecithin may create an adverse effect on human health. Thus, this study aims to replace the lecithin with plant-based gums. Different ratios of guar and arabic gum (25%-75%) and their blend (25%-75%) were employed as partial replacement of lecithin. Milk chocolate prepared using 40% guar gum (60GGL [guar gum, lecithin]), 25% arabic gum (75AGL [arabic gum, lecithin]), and a blend of 15 arabic gum and 10 guar gum (65AGGL [arabic gum, guar gum, lecithin]) showed similar rheological behavior as compared to control chocolate (100% lecithin). The fat content of 65AGGL (37.85%) was significantly lower than that of the control sample (43.37%). Rheological behavior exhibited shear-thinning behavior and samples (60GGL-75GGL-80GGL, 65AGL-75AGL, and 65AGGL-75AGGL) showed similar rheological properties as compared to control. The chocolate samples (60GGL and 65AGGL) showed significantly (p < .05) higher hardness values (86.01 and 83.55 N) than the control (79.95 N). As well, gum-added chocolates exhibited higher thermal stability up to 660°C as compared to the control sample. The Fourier transform infrared spectroscopy (FTIR) analysis revealed predominant ß-(1 → 4) and ß-(1 → 6) glycosidic linkages of the gums and lecithin. Sensory evaluation revealed a comparable score of gum-added milk chocolate in comparison to control samples in terms of taste, texture, color, and overall acceptance. Thus, plant exudate gums could be an excellent alternative to lecithin in milk chocolate, which can enhance the textural properties and shelf life.

12.
Food Sci Nutr ; 12(5): 3150-3163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726405

RESUMO

Polysaccharides from non-conventional sources, such as fruits, have gained significant attention recently. Aegle marmelos (Bael), a non-conventional fruit, is an excellent source of biologically active components with potential indigenous therapeutic and food applications. Apart from polyphenolic components, this is an excellent source of mucilaginous polysaccharides. Polysaccharides are one the major components of bael fruit, having a high amount of galactose and glucuronic acid, which contributes to its potential therapeutic properties. Therefore, this review emphasizes the conventional and emerging techniques of polysaccharide extraction from bael fruit. Insight into the attributes of polysaccharide components, their techno-functional properties, characterization of bael fruit polysaccharide, emulsifying properties, binding properties, reduction of hazardous dyes, application of polysaccharides in film formation, application of polysaccharide as a nanocomposite, and biological activities of bael fruit polysaccharides are discussed. This review also systematically overviews the relationship between extraction techniques, structural characteristics, and biological activities. Additionally, recommendations, future perspectives, and new valuable insight towards better utilization of bael fruit polysaccharide have been given importance, which can be promoted in the long term.

13.
Int J Biol Macromol ; 271(Pt 2): 132688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806080

RESUMO

Gums are high-molecular-weight compounds with hydrophobic or hydrophilic characteristics, which are mainly comprised of complex carbohydrates called polysaccharides, often associated with proteins and minerals. Various innovative modification techniques are utilized, including ultrasound-assisted and microwave-assisted techniques, enzymatic alterations, electrospinning, irradiation, and amalgamation process. These methods advance the process, reducing processing times and energy consumption while maintaining the quality of the modified gums. Enzymes like xanthan lyases, xanthanase, and cellulase can selectively modify exudate gums, altering their structure to enhance their properties. This precise enzymatic approach allows for the use of exudate gums for specific applications. Exudate gums have been employed in nanotechnology applications through techniques like electrospinning. This enables the production of nanoparticles and nanofibers with improved properties, making them suitable for the drug delivery system, tissue engineering, active and intelligient food packaging. The resulting modified exudate gums exhibit improved rheological, emulsifying, gelling, and other functional properties, which expand their potential applications. This paper discusses novel applications of these modified gums in the pharmaceutical, food, and industrial sectors. The ever-evolving field presents diverse opportunities for sustainable innovation across these sectors.


Assuntos
Gomas Vegetais , Gomas Vegetais/química , Sistemas de Liberação de Medicamentos , Humanos
14.
Foods ; 13(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731769

RESUMO

Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.

15.
Int J Biol Macromol ; 268(Pt 1): 131687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642692

RESUMO

In future, global demand for low-cost-sustainable materials possessing good strength is going to increase tremendously, to replace synthetic plastic materials, thus motivating scientists towards green composites. The PLA has been the most promising sustainable bio composites, due to its inherent antibacterial property, biodegradability, eco-friendliness, and good thermal and mechanical characteristics. However, PLA has certain demerits such as poor water and gas barrier properties, and low glass transition temperature, which restricts its use in food packaging applications. To overcome this, PLA is blended with polysaccharides such as gum and cellulose to enhance the water barrier, thermal, crystallization, degradability, and mechanical properties. Moreover, the addition of these polysaccharides not only reduces the production cost but also helps in manufacturing packaging material with superior quality. Hence this review focuses on various fabrication techniques, degradation of the ternary composite, and its application in the food sector. Moreover, this review discusses the enhanced barrier and mechanical properties of the ternary blend packaging material. Incorporation of gum enhanced flexibility, while the reinforcement of cellulose improved the structural integrity of the ternary composite. The unique properties of this ternary composite make it suitable for extending the shelf life of food packaging, specifically for fruits, vegetables, and fried products. Future studies must be conducted to investigate the optimization of formulations for specific food types, explore scalability for industrial applications, and integrate these composites with emerging technologies (3D/4D printing).


Assuntos
Celulose , Embalagem de Alimentos , Poliésteres , Embalagem de Alimentos/métodos , Celulose/química , Poliésteres/química , Gomas Vegetais/química
16.
Int J Biol Macromol ; 267(Pt 1): 131431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593896

RESUMO

In recent years, there increment demand for healthier food options that can replace high-fat ingredients in bakery products without compromising their taste and texture. This research was focused on a formulation study of the blend of nano polysaccharides derived from aloe vera and guar gum at various concentrations. This study selected the blend concentration of 1 % aloe vera mucilage (AM) and 1 % guar gum (GG) due to its optimal gelling properties. Different magnetic stirring time durations were employed to formulate AGB (aloe vera guar gum blend). The particle size of AGB revealed the lowest nanoparticle size (761.03 ± 62 nm) with a stirring time of 4 h. The FTIR analysis found the presence of monomer sugars in AGB nano polysaccharide powder such as mannose, arabinose, and glucose. The thermogram results displayed an endothermic peak for all samples with a glass transition temperature (Tg) between 16 and 50 °C. The SEM image of the AGB indicated uniform spherical particles. The AGB powder exhibited good functional properties. The antimicrobial activity of AGB powder against Staphylococcus aureus, Escherichia coli, and Candida albicans was 22.32 ± 0.02, 21.56 ± 0.02, and 19.33 ± 0.33 mm, respectively. Furthermore, the effects of different levels of vegetable fat replacement with AGB powder on cake sensory properties, thermal stability, and texture characteristics were also examined. Notably, the cake containing a 50 % substitution of vegetable fat with AGB (C50) supplied desirable physicochemical, textural, and sensory properties. These results can provide advantages for the development of fat replacers in bakery products.


Assuntos
Aloe , Galactanos , Mananas , Gomas Vegetais , Polissacarídeos , Galactanos/química , Mananas/química , Mananas/farmacologia , Gomas Vegetais/química , Aloe/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Substitutos da Gordura/química , Candida albicans/efeitos dos fármacos , Tamanho da Partícula , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química
17.
Foods ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540838

RESUMO

Elephant apple, a fruit with numerous bioactive compounds, is rich in therapeutic qualities. However, its use in processed products is limited due to insufficient postharvest processing methods. To address this issue, an automatic core cutter (ACC) was developed to handle the hard nature of the fruit while cutting. The physical characteristics of the elephant apple were considered for designing and development of the cutter. The cutter is divided into four main sections, including a frame, collecting tray, movable coring unit, and cutting base with five fruit holders. The parts that directly contact the fruit are made of food-grade stainless steel. The efficiency of the cutter was analyzed based on cutting/coring capacity, machine efficiency, loss percentage, and other factors, and was compared to traditional cutting methods (TCM) and a foot-operated core cutter (FOCC). The ACC had an average cutting/coring capacity of 270-300 kg/h, which was significantly higher than TCM's capacity of 12-15 kg/h and comparable to FOCC's capacity of 115-130 kg/h. The ACC offered a higher sepal yield of 85.68 ± 1.80% compared to TCM's yield of 65.76 ± 1.35%, which was equivalent to the yield obtained by FOCC. Therefore, the ACC outperforms TCM in terms of quality, quantity, and stress associated and is superior to FOCC in terms of higher efficiency of machine and labor.

18.
Food Chem ; 447: 138945, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461725

RESUMO

Artificial intelligence has the potential to alter the agricultural and food processing industries, with significant ramifications for sustainability and global food security. The integration of artificial intelligence in agriculture has witnessed a significant uptick in recent years. Therefore, comprehensive understanding of these techniques is needed to broaden its application in agri-food supply chain. In this review, we explored cutting-edge artificial intelligence methodologies with a focus on machine learning, neural networks, and deep learning. The application of artificial intelligence in agri-food industry and their quality assurance throughout the production process is thoroughly discussed with an emphasis on the current scientific knowledge and future perspective. Artificial intelligence has played a significant role in transforming agri-food systems by enhancing efficiency, sustainability, and productivity. Many food industries are implementing the artificial intelligence in modelling, prediction, control tool, sensory evaluation, quality control, and tackling complicated challenges in food processing. Similarly, artificial intelligence applied in agriculture to improve the entire farming process, such as crop yield optimization, use of herbicides, weeds identification, and harvesting of fruits. In summary, the integration of artificial intelligence in agri-food systems offers the potential to address key challenges in agriculture, enhance sustainability, and contribute to global food security.


Assuntos
Inteligência Artificial , Indústria de Processamento de Alimentos , Indústria Alimentícia , Manipulação de Alimentos , Redes Neurais de Computação , Agricultura
19.
Gels ; 10(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391425

RESUMO

Taro mucilage is a cost-effective, eco-friendly, and water-soluble edible viscous polysaccharide, which possesses diverse techno-functional properties including gelling and anti-microbial. Therefore, the objective of this study was to formulate and evaluate the efficacy of taro mucilage nanohydrogel for the shelf-life enhancement of fresh-cut apples. Taro mucilage was extracted using cold water extraction, and the yield of mucilage was found to be 2.95 ± 0.35% on a dry basis. Different concentrations of mucilage (1, 2, 3, 4, and 5%) were used to formulate the nanohydrogel. A smaller droplet size of 175.61 ± 0.92 nm was observed at 3% mucilage, with a zeta potential of -30.25 ± 0.94 mV. Moreover, FTIR data of nanohydrogel revealed the functional groups of various sugars, uronic acids, and proteins. Thermal analysis of nanohydrogel exhibited weight loss in three phases, and maximum weight loss occurred from 110.25 °C to 324.27 °C (65.16%). Nanohydrogel showed shear-thinning fluid or pseudo-plastic behavior. Coating treatment of nanohydrogel significantly reduced the weight loss of fresh-cut apples (8.72 ± 0.46%) as compared to the control sample (12.25 ± 0.78%) on the 10th day. In addition, minor changes were observed in the pH for both samples during the 10 days of storage. Titrable acidity of control fresh-cut apples measured 0.22 ± 0.05% on day 0, rising to 0.42 ± 0.03% on the 10th day, and for coated fresh-cut apples, it was observed to be 0.24 ± 0.07% on the 0th day and 0.36 ± 0.06% on 10th day, respectively. Furthermore, the total soluble solids (TSS) content of both control and coated fresh-cut apples measured on the 0th day was 11.85 ± 0.65% and 12.33 ± 0.92%, respectively. On the 10th day, these values were significantly increased (p < 0.05) to 16.38 ± 0.42% for the control and 14.26 ± 0.39% for the coated sliced apples, respectively. Nanohydrogel-coated fresh-cut apples retained antioxidant activity and vitamin C content as compared to the control sample. Taro mucilage nanohydrogel-based edible coating showed distinct anti-microbial activity against psychrotrophic, aerobic, and yeast molds. In summary, taro mucilage nanohydrogel can be used as a cost-effective natural coating material for the shelf-life enhancement or freshness maintenance of fresh-cut apples.

20.
Foods ; 13(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338632

RESUMO

This study investigated the quality characteristics of pasteurized and thermosonicated bor-thekera (Garcinia pedunculata) juices (TSBTJs) during storage at 4 °C for 30 days. Various parameters, including pH, titratable acidity (TA), total soluble content (TSSs), antioxidant activity (AA), total phenolic content (TPC), total flavonoid content (TFC), ascorbic acid content (AAC), cloudiness (CI) and browning indexes (BI), and microbial activity, were analyzed at regular intervals and compared with the quality parameters of fresh bor-thekera juice (FBTJ). A multi-layer artificial neural network (ANN) was employed to model and optimize the ultrasound-assisted extraction of bor-thekera juice. The impacts of storage time, treatment time, and treatment temperature on the quality attributes were also explored. The TSBTJ demonstrated the maximum retention of nutritional attributes compared with the pasteurized bor-thekera juice (PBTJ). Additionally, the TSBTJ exhibited satisfactory results for microbiological activity, while the PBTJ showed the highest level of microbial inactivation. The designed ANN exhibited low mean squared error values and high R2 values for the training, testing, validation, and overall datasets, indicating a strong relationship between the actual and predicted results. The optimal extraction parameters generated by the ANN included a treatment time of 30 min, a frequency of 44 kHz, and a temperature of 40 °C. In conclusion, thermosonicated juices, particularly the TSBTJ, demonstrated enhanced nutritional characteristics, positioning them as valuable reservoirs of bioactive components suitable for incorporation in the food and pharmaceutical industries. The study underscores the efficacy of ANN as a predictive tool for assessing bor-thekera juice extraction efficiency. Moreover, the use of thermosonication emerged as a promising alternative to traditional thermal pasteurization methods for bor-thekera juice preservation, mitigating quality deterioration while augmenting the functional attributes of the juice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...