RESUMO
Metal-organic frameworks (MOFs) are useful synthetic materials that are built by the programmed assembly of metal nodes and organic linkers1. The success of MOFs results from the isoreticular principle2, which allows families of structurally analogous frameworks to be built in a predictable way. This relies on directional coordinate covalent bonding to define the framework geometry. However, isoreticular strategies do not translate to other common crystalline solids, such as organic salts3-5, in which the intermolecular ionic bonding is less directional. Here we show that chemical knowledge can be combined with computational crystal-structure prediction6 (CSP) to design porous organic ammonium halide salts that contain no metals. The nodes in these salt frameworks are tightly packed ionic clusters that direct the materials to crystallize in specific ways, as demonstrated by the presence of well-defined spikes of low-energy, low-density isoreticular structures on the predicted lattice energy landscapes7,8. These energy landscapes allow us to select combinations of cations and anions that will form thermodynamically stable, porous salt frameworks with channel sizes, functionalities and geometries that can be predicted a priori. Some of these porous salts adsorb molecular guests such as iodine in quantities that exceed those of most MOFs, and this could be useful for applications such as radio-iodine capture9-12. More generally, the synthesis of these salts is scalable, involving simple acid-base neutralization, and the strategy makes it possible to create a family of non-metal organic frameworks that combine high ionic charge density with permanent porosity.
RESUMO
Strongyloides stercoralis is a parasitic roundworm that is present worldwide and can cause lifelong, often asymptomatic, infection. Immunosuppression, particularly by corticosteroids, is a risk factor for hyperinfection syndrome and disseminated strongyloidiasis-severe disease states that can lead to septic shock and death. Our institution implemented a strongyloidiasis screening and empiric ivermectin treatment protocol for inpatients receiving high-dose corticosteroids for severe COVID-19. Among 487 COVID-19 admissions treated with high-dose corticosteroids from June 10, 2020 to March 31, 2021, 61% of those with demographics at risk for Strongyloides exposure were screened for Strongyloides and treated empirically with ivermectin. Adherence to the protocol declined over time during the study period. The empiric ivermectin protocol appeared safe, but more research is needed to determine the effect on hyperinfection and/or disseminated strongyloidiasis risk and mortality rate, as well as to improve institutional adherence to the protocol.
Assuntos
COVID-19 , Strongyloides stercoralis , Estrongiloidíase , Humanos , Animais , Ivermectina/uso terapêutico , Estrongiloidíase/tratamento farmacológico , Pacientes Internados , Corticosteroides/uso terapêutico , Infecções Assintomáticas , Protocolos ClínicosRESUMO
Chronic obstructive pulmonary disease (COPD) and lung cancer 17 are two of the most prevalent and debilitating respiratory diseases worldwide, both associated with high morbidity and mortality rates. As major global health concerns, they impose a substantial burden on patients, healthcare systems, and society at large. Despite their distinct aetiologies, lung cancer and COPD share common risk factors, clinical features, and pathological pathways, which have spurred increasing research interest in their co-occurrence. One area of particular interest is the role of the lung microbiome in the development and progression of these diseases, including the transition from COPD to lung cancer. Exploring novel therapeutic strategies, such as metal-based drugs, offers a potential avenue for targeting the microbiome in these diseases to improve patient outcomes. This review aims to provide an overview of the current understanding of the lung microbiome, with a particular emphasis on COPD and lung cancer, and to discuss the potential of metal-based drugs as a therapeutic strategy for these conditions, specifically concerning targeting the microbiome.
Assuntos
Neoplasias Pulmonares , Microbiota , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/terapia , Neoplasias Pulmonares/tratamento farmacológico , Fatores de RiscoRESUMO
Crystalline porous organic salts (CPOS) are a subclass of molecular crystals. The low solubility of CPOS and their building blocks limits the choice of crystallisation solvents to water or polar alcohols, hindering the isolation, scale-up, and scope of the porous material. In this work, high throughput screening was used to expand the solvent scope, resulting in the identification of a new porous salt, CPOS-7, formed from tetrakis(4-sulfophenyl)methane (TSPM) and tetrakis(4-aminophenyl)methane (TAPM). CPOS-7 does not form with standard solvents for CPOS, rather a hydrated phase (Hydrate2920) previously reported is isolated. Initial attempts to translate the crystallisation to batch led to challenges with loss of crystallinity and Hydrate2920 forming favorably in the presence of excess water. Using acetic acid as a dehydrating agent hindered formation of Hydrate2920 and furthermore allowed for direct conversion to CPOS-7. To allow for direct formation of CPOS-7 in high crystallinity flow chemistry was used for the first time to circumvent the issues found in batch. CPOS-7 and Hydrate2920 were shown to have promise for water and CO2 capture, with CPOS-7 having a CO2 uptake of 4.3â mmol/g at 195â K, making it one of the most porous CPOS reported to date.
RESUMO
BACKGROUND: Foreign-born kidney transplant recipients (FBKTRs) are at increased risk for reactivation of latent infections that may impact outcomes. We aimed to compare the etiology of infections and outcomes between FBKTR and United States KTRs (USKTR). METHODS: We performed a retrospective study of patients who underwent kidney transplantation between January 1, 2014 and December 31, 2018 at two transplant centers in Minnesota. Frequency and etiology of infections as well as outcomes (graft function, rejection, and patient survival) at 1-year post-transplant between FBKTR and USKTR were compared. RESULTS: Of the 573 transplant recipients, 124 (21.6%) were foreign-born and 449 (78.4%) US-born. At least one infection occurred in 411 (71.7%) patients (38.2% bacterial, 55% viral, 9.4% fungal). Viral infections were more frequent in FBKTR, particularly BK viremia (38.7% vs. 21.2%, p < .001). No statistical differences were found for bacterial or fungal infections; no parasitic infections were identified in either group. No geographically-restricted infections were noted aside from a single case of Madura foot in a FBKTR. Rejection episodes were more common in USKTR (p = .037), but stable/improving graft function (p = .976) and mortality (p = .451) at 1-year posttransplantation were similar in both groups. After adjusting for covariates, previous transplantation was associated with a higher number of infections (IRR 1.35, 95% confidence intervals 1.05-1.73, p = .020). CONCLUSION: Although viral infections were more frequent in FBKTR, overall frequency and etiology of most infections and outcomes were similar between FBKTR and USKTR suggesting that comprehensive transplant care is providing timely prevention, diagnosis, and treatment of latent infections in FBKTR.
Assuntos
Transplante de Rim , Infecção Latente , Humanos , Emigração e Imigração , Rejeição de Enxerto/epidemiologia , Rejeição de Enxerto/prevenção & controle , Transplante de Rim/efeitos adversos , Minnesota/epidemiologia , Estudos Retrospectivos , TransplantadosRESUMO
Antimicrobial resistance (AMR) is one of the serious global health challenges of our time. There is now an urgent need to develop novel therapeutic agents that can overcome AMR, preferably through alternative mechanistic pathways from conventional treatments. The antibacterial activity of metal complexes (metal = Cu(II), Mn(II), and Ag(I)) incorporating 1,10-phenanthroline (phen) and various dianionic dicarboxylate ligands, along with their simple metal salt and dicarboxylic acid precursors, against common AMR pathogens were investigated. Overall, the highest level of antibacterial activity was evident in compounds that incorporate the phen ligand compared to the activities of their simple salt and dicarboxylic acid precursors. The chelates incorporating both phen and the dianion of 3,6,9-trioxaundecanedioic acid (tdda) were the most effective, and the activity varied depending on the metal centre. Whole-genome sequencing (WGS) was carried out on the reference Pseudomonas aeruginosa strain, PAO1. This strain was exposed to sub-lethal doses of lead metal-tdda-phen complexes to form mutants with induced resistance properties with the aim of elucidating their mechanism of action. Various mutations were detected in the mutant P. aeruginosa genome, causing amino acid changes to proteins involved in cellular respiration, the polyamine biosynthetic pathway, and virulence mechanisms. This study provides insights into acquired resistance mechanisms of pathogenic organisms exposed to Cu(II), Mn(II), and Ag(I) complexes incorporating phen with tdda and warrants further development of these potential complexes as alternative clinical therapeutic drugs to treat AMR infections.
Assuntos
Complexos de Coordenação , Complexos de Coordenação/farmacologia , Fenantrolinas/farmacologia , Fenantrolinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Metais , Sequenciamento Completo do GenomaRESUMO
Pretransplant recommendations advise risk-based screening for strongyloidiasis, schistosomiasis, and Chagas disease. We evaluated the implementation of a chronic parasite screening protocol at a health system in a nonendemic region serving a large foreign-born population. Candidates listed for kidney transplant at Hennepin Healthcare (Minneapolis, MN) between 2010 and 2020 were included. Country of birth and serologic screening for strongyloidiasis, schistosomiasis, and Chagas disease were retrospectively obtained from electronic medical records. Parasite screening frequency and seropositivity was assessed before and after implementation of a geographic risk factor-based screening protocol in 2014. Cost-efficiency of presumptive treatment was modeled. Of 907 kidney transplant candidates, 312 (34%) were born in the United States and 232 (26%) outside the United States, with the remainder missing country of birth information. The 447 (49%) candidates evaluated after implementation of the screening protocol had fewer unidentified countries of birth (53%-27%, P < 0.001) and were more frequently screened for strongyloidiasis, schistosomiasis, and Chagas disease (14%-44%, 8%-22%, and 1-14%, respectively, all Ps < 0.001). The number of identified seropositive candidates increased after protocol implementation from two to 14 for strongyloidiasis and from one to 11 for schistosomiasis, with none seropositive for Chagas disease. The cost-efficiency model favored presumptive ivermectin when strongyloidiasis prevalence reaches 30% of those screened. Implementing a geographic risk screening protocol before kidney transplant increases attention to infectious disease risk associated with country of birth and identification of chronic parasitic infections. In populations with higher strongyloidiasis prevalence or lower ivermectin costs, presumptive treatment may be cost-efficient.
Assuntos
Doença de Chagas , Transplante de Rim , Parasitos , Doenças Parasitárias , Esquistossomose , Estrongiloidíase , Animais , Humanos , Estados Unidos , Estrongiloidíase/diagnóstico , Estrongiloidíase/tratamento farmacológico , Estrongiloidíase/epidemiologia , Minnesota/epidemiologia , Ivermectina , Estudos Retrospectivos , Doenças Parasitárias/epidemiologia , Esquistossomose/epidemiologia , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologiaRESUMO
A porous molecular crystal (TSCl) was found to crystallise from dichloromethane and water during the synthesis of tetrakis(4-sulfophenylmethane). Crystal structure prediction (CSP) rationalises the driving force behind the formation of this porous TSCl phase and the intermolecular interactions that direct its formation. Gas sorption analysis showed that TSCl is permanently porous with selective adsorption of CO2 over N2, H2 and CH4 and a maximum CO2 uptake of 74 cm3 g-1 at 195 K. Calculations revealed that TSCl assembles via a combination of weak hydrogen bonds and strong dispersion interactions. This illustrates that CSP can underpin approaches to crystal engineering that do not involve more intuitive directional interactions, such as hydrogen bonding.
RESUMO
Drug-resistant Pseudomonas aeruginosa is rapidly developing resulting in a serious global threat. Immunocompromised patients are specifically at risk, especially those with cystic fibrosis (CF). Novel metal complexes incorporating 1,10-phenanthroline (phen) ligands have previously demonstrated antibacterial and anti-biofilm effects against resistant P. aeruginosa from CF patients in vitro. Herein, we present the in vivo efficacy of {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Cu-tdda-phen), {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Mn-tdda-phen) and [Ag2(3,6,9-tdda)(phen)4]·EtOH (Ag-tdda-phen) (tddaH2 = 3,6,9-trioxaundecanedioic acid). Individual treatments of these metal-tdda-phen complexes and in combination with the established antibiotic gentamicin were evaluated in vivo in larvae of Galleria mellonella infected with clinical isolates and laboratory strains of P. aeruginosa. G. mellonella were able to tolerate all test complexes up to 10 µg/larva. In addition, the immune response was affected by stimulation of immune cells (hemocytes) and genes that encode for immune-related peptides, specifically transferrin and inducible metallo-proteinase inhibitor. The amalgamation of metal-tdda-phen complexes and gentamicin further intensified this response at lower concentrations, clearing a P. aeruginosa infection that were previously resistant to gentamicin alone. Therefore this work highlights the anti-pseudomonal capabilities of metal-tdda-phen complexes alone and combined with gentamicin in an in vivo model.
RESUMO
Global health education programs should strive continually to improve the quality of education, increase access, create communities that foster excellence in global health practices, and ensure sustainability. The COVID-19 pandemic forced the University of Minnesota's extensive global health education programs, which includes a decade of hybrid online and in-person programing, to move completely online. We share our experience, a working framework for evaluating global health educational programming, and lessons learned. Over the decades we have moved from a predominantly passive, lecture-based, in-person course to a hybrid online (passive) course with an intensive hands-on 2-week requirement. The pandemic forced us to explore new active online learning models. We retained our on-demand, online passive didactics, which used experts' time efficiently and was widely accessible and well received. In addition, we developed a highly effective synchronous online component that we felt replaced some of the hands-on activities effectively and led us to develop new and innovative "hands-on" experiences. This new, fully online model combining quality asynchronous and synchronous learning provided many unanticipated advantages, such as increasing access while decreasing our carbon footprint dramatically. By sharing our experience, lessons learned, and resources, we hope to inspire other programs likewise to innovate to improve quality, access, community, and sustainability in global health, especially if these innovations can help decrease negative aspects of global health education such as its environmental impact.
Assuntos
COVID-19/epidemiologia , Currículo , Saúde Global , Educação em Saúde , SARS-CoV-2 , Educação a Distância , Humanos , Tailândia , Uganda , Estados Unidos , UniversidadesRESUMO
We administered a standardized 41-item questionnaire to a convenience sample of graduates of five residency programs with formal global health pathways and compared findings to a national cohort of practicing physicians to evaluate the comparative effectiveness of an overarching global health pathway on residency program graduates. Compared with the national cohort database, global health pathway graduates self-reported that they felt better prepared to treat immigrants, refugees, patients with limited English proficiency (LEP), racial/ethnic minorities, those with non-Western health beliefs, international travelers, and military veterans (P < 0.05). They were more likely to report using best practices when working with lesbian, gay, bisexual, transgender, queer/questioning patients, immigrant and refugee patients, patients with non-Western health beliefs, patients with LEP, and patients communicating via American Sign Language (P < 0.05). They also reported being more familiar with 11 of 14 high-impact or common infections encountered in travelers, immigrants, and military personnel (P < 0.05). Our findings suggest that formal postgraduate training focused on global health improves knowledge, attitudes, and self-reported medical practices when caring for diverse and marginalized populations in the United States.
Assuntos
Competência Clínica , Saúde Global/educação , Internato e Residência , Qualidade da Assistência à Saúde , Humanos , Inquéritos e Questionários , Estados UnidosRESUMO
Antibiotic resistance is a growing problem for public health and associated with increasing economic costs and mortality rates. Silver and silver-related compounds have been used for centuries due to their antimicrobial properties. In this work, we show that 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate/NHC*-Ag-OAc (SBC3) is a reversible, high affinity inhibitor of E. coli thioredoxin reductase (TrxR; Ki =10.8±1.2â nM). Minimal inhibition concentration (MIC) tests with different E. coli and P. aeruginosa strains demonstrated that SBC3 can efficiently inhibit bacterial cell growth, especially in combination with established antibiotics like gentamicin. Our results show that SBC3 is a promising antibiotic drug candidate targeting bacterial TrxR.
Assuntos
Antibacterianos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Gentamicinas/farmacologia , Imidazolinas/química , Imidazolinas/metabolismo , Imidazolinas/farmacologia , Cinética , Testes de Sensibilidade Microbiana , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Compostos Organometálicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/metabolismoRESUMO
Chronic infections of Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients are problematic in Ireland where inherited CF is prevalent. The bacteria's capacity to form a biofilm in its pathogenesis is highly virulent and leads to decreased susceptibility to most antibiotic treatments. Herein, we present the activity profiles of the Cu(II), Mn(II) and Ag(I) tdda-phen chelate complexes {[Cu(3,6,9-tdda)(phen)2].3H2O.EtOH}n (Cu-tdda-phen), {[Mn(3,6,9-tdda)(phen)2].3H2O.EtOH}n (Mn-tdda-phen) and [Ag2(3,6,9-tdda)(phen)4].EtOH (Ag-tdda-phen) (tddaH2 = 3,6,9-trioxaundecanedioic acid; phen = 1,10-phenanthroline) towards clinical isolates of P. aeruginosa derived from Irish CF patients in comparison to two reference laboratory strains (ATCC 27853 and PAO1). The effects of the metal-tdda-phen complexes and gentamicin on planktonic growth, biofilm formation (pre-treatment) and mature biofilm (post-treatment) alone and in combination were investigated. The effects of the metal-tdda-phen complexes on the individual biofilm components; exopolysaccharide, extracellular DNA (eDNA), pyocyanin and pyoverdine are also presented. All three metal-tdda-phen complexes showed comparable and often superior activity to gentamicin in the CF strains, compared to their activities in the laboratory strains, with respect to both biofilm formation and established biofilms. Combination studies presented synergistic activity between all three complexes and gentamicin, particularly for the post-treatment of established mature biofilms, and was supported by the reduction of the individual biofilm components examined.
RESUMO
Elastase B (lasB) is a multifunctional metalloenzyme secreted by the gram-negative pathogen Pseudomonas aeruginosa, and this enzyme orchestrates several physiopathological events during bacteria-host interplays. LasB is considered to be a potential target for the development of an innovative chemotherapeutic approach, especially against multidrug-resistant strains. Recently, our group showed that 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2.4H2O (Cu-phendione) had anti-P. aeruginosa action against both planktonic- and biofilm-growing cells. In the present work, we have evaluated the effects of these compounds on the (i) interaction with the lasB active site using in silico approaches, (ii) lasB proteolytic activity by using a specific fluorogenic peptide substrate, (iii) lasB gene expression by real time-polymerase chain reaction, (iv) lasB protein secretion by immunoblotting, (v) ability to block the damages induced by lasB on a monolayer of lung epithelial cells, and (vi) survivability of Galleria mellonella larvae after being challenged with purified lasB and lasB-rich bacterial secretions. Molecular docking analyses revealed that phendione and its Ag+ and Cu2+ complexes were able to interact with the amino acids forming the active site of lasB, particularly Cu-phendione which exhibited the most favorable interaction energy parameters. Additionally, the test compounds were effective inhibitors of lasB activity, blocking the in vitro cleavage of the peptide substrate, aminobenzyl-Ala-Gly-Leu-Ala-p-nitrobenzylamide, with Cu-phendione having the best inhibitory action (K i = 90 nM). Treating living bacteria with a sub-inhibitory concentration (½ × MIC value) of the test compounds caused a significant reduction in the expression of the lasB gene as well as its mature protein production/secretion. Further, Ag-phendione and Cu-phendione offered protective action for lung epithelial cells, reducing the A549 monolayer damage by approximately 32 and 42%, respectively. Interestingly, Cu-phendione mitigated the toxic effect of both purified lasB molecules and lasB-containing bacterial secretions in the in vivo model, increasing the survival time of G. mellonella larvae. Collectively, these data reinforce the concept of lasB being a veritable therapeutic target and phendione-based compounds (mainly Cu-phendione) being prospective anti-virulence drugs against P. aeruginosa.
RESUMO
Community-associated Clostridium difficile infection (CA-CDI) now accounts for approximately 50% of CDI cases in central Minnesota; animals and meat products are potential sources. From November 2011 to July 2013, we cultured retail meat products and fecal samples from food-producing and companion animals in central Minnesota for C. difficile by using standard methods. The resulting 51 C. difficile isolates, plus 30 archived local veterinary C. difficile isolates and 208 human CA-CDI case isolates from central Minnesota (from 2012) from the Minnesota Department of Health, were characterized molecularly, and source groups were compared using discriminant analysis. C. difficile was recovered from 0 (0%) of 342 retail meat samples and 51 (9%) of 559 animal fecal samples. Overall, the 81 animal source isolates and 208 human source isolates were highly diverse genetically. Molecular traits segregated extensively in relation to animal versus human origin. Discriminant analysis classified 95% of isolates correctly by source group; only five (2.5%) human source isolates were classified as animal source. These data do not support meat products or food-producing and companion animals as important sources of CA-CDI in the central Minnesota study region.
Assuntos
Clostridioides difficile/isolamento & purificação , Infecções por Clostridium , Gado/microbiologia , Carne/microbiologia , Animais de Estimação/microbiologia , Animais , Clostridioides difficile/classificação , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/veterinária , Fezes/microbiologia , Humanos , Minnesota/epidemiologia , PrevalênciaRESUMO
Recurrent Clostridium difficile infection (R-CDI) is common and difficult to treat, potentially necessitating fecal microbiota transplantation (FMT). Although C. difficilespores persist in the hospital environment and cause infection, little is known about their potential presence or importance in the household environment. Households of R-CDI subjects in the peri-FMT period and of geographically matched and age-matched controls were analyzed for the presence ofC. difficile Household environmental surfaces and fecal samples from humans and pets in the household were examined. Households of post-FMT subjects were also examined (environmental surfaces only). Participants were surveyed regarding their personal history and household cleaning habits. Species identity and molecular characteristics of presumptive C. difficile isolates from environmental and fecal samples were determined by using the Pro kit (Remel, USA), Gram staining, PCR, toxinotyping, tcdC gene sequencing, and pulsed-field gel electrophoresis (PFGE). Environmental cultures detected C. difficile on ≥1 surface in 8/8 (100%) peri-FMT households, versus 3/8 (38%) post-FMT households and 3/8 (38%) control households (P= 0.025). The most common C. difficile-positive sites were the vacuum (11/27; 41%), toilet (8/30; 27%), and bathroom sink (5/29; 17%).C. difficile was detected in 3/36 (8%) fecal samples (two R-CDI subjects and one household member). Nine (90%) of 10 households with multiple C. difficile-positive samples had a single genotype present each. In conclusion,C. difficile was found in the household environment of R-CDI patients, but whether it was found as a cause or consequence of R-CDI is unknown. If household contamination leads to R-CDI, effective decontamination may be protective.
Assuntos
Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Poluição Ambiental/estatística & dados numéricos , Características da Família , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Clostridioides difficile/classificação , Clostridioides difficile/genética , Estudos Transversais , Microbiologia Ambiental , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Minnesota/epidemiologia , Animais de Estimação/microbiologia , Prevalência , Recidiva , Adulto JovemRESUMO
Fecal microbiota transplantation (FMT) is a highly effective therapy for recurrent Clostridium difficile infection (R-CDI), but its mechanisms remain poorly understood. Emerging evidence suggests that gut bile acids have significant influence on the physiology of C. difficile, and therefore on patient susceptibility to recurrent infection. We analyzed spore germination of 10 clinical C. difficile isolates exposed to combinations of bile acids present in patient feces before and after FMT. Bile acids at concentrations found in patients' feces prior to FMT induced germination of C. difficile, although with variable potency across different strains. However, bile acids at concentrations found in patients after FMT did not induce germination and inhibited vegetative growth of all C. difficile strains. Sequencing of the newly identified germinant receptor in C. difficile, CspC, revealed a possible correspondence of variation in germination responses across isolates with mutations in this receptor. This may be related to interstrain variability in spore germination and vegetative growth in response to bile acids seen in this and other studies. These results support the idea that intra-colonic bile acids play a key mechanistic role in the success of FMT, and suggests that novel therapeutic alternatives for treatment of R-CDI may be developed by targeted manipulation of bile acid composition in the colon.
Assuntos
Ácidos e Sais Biliares/metabolismo , Terapia Biológica/métodos , Clostridioides difficile/crescimento & desenvolvimento , Colo/metabolismo , Enterocolite Pseudomembranosa/prevenção & controle , Transplante de Microbiota Fecal , Fezes/microbiologia , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/patogenicidade , Colo/microbiologia , Enterocolite Pseudomembranosa/microbiologia , HumanosRESUMO
GOALS: To test whether ursodeoxycholic acid (UDCA) is inhibitory to Clostridium difficile and can be used in the treatment of C. difficile-associated ileal pouchitis. BACKGROUND: The restoration of secondary bile metabolism may be the key mechanism for fecal microbiota transplantation (FMT) in treating recurrent C. difficile infections (RCDI). Therefore, it is possible that exogenous administration of inhibitory bile acids may be used directly as nonantibiotic therapeutics for this indication. The need for such a treatment alternative is especially significant in patients with refractory C. difficile-associated pouchitis, where the efficacy of FMT may be limited. STUDY: We measured the ability of UDCA to suppress the germination and the vegetative growth of 11 clinical isolate strains of C. difficile from patients treated with FMT for RCDI. In addition, we used oral UDCA to treat a patient with RCDI pouchitis that proved refractory to multiple antibiotic treatments and FMT. RESULTS: UDCA was found to be inhibitory to the germination and the vegetative growth of all C. difficile strains tested. Fecal concentrations of UDCA from the patient with RCDI pouchitis exceeded levels necessary to inhibit the germination and the growth of C. difficile in vitro. The patient has remained infection free for over 10 months after the initiation of UDCA. CONCLUSIONS: UDCA can be considered as a therapeutic option in patients with C. difficile-associated pouchitis. Further studies need to be conducted to define the optimal dose and duration of such a treatment. In addition, bile acid derivatives inhibitory to C. difficile that are able to achieve high intracolonic concentrations may be developed as therapeutics for RCDI colitis.