Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716885

RESUMO

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

2.
Inorg Chem ; 63(6): 2899-2908, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38127051

RESUMO

The energetic and geometric features enabling redox chemistry across the copper cupredoxin fold contain key components of electron transfer chains (ETC), which have been extended here by templating the cross-ß bilayer assembly of a synthetic nonapeptide, HHQALVFFA-NH2 (K16A), with copper ions. Similar to ETC cupredoxin plastocyanin, these assemblies contain copper sites with blue-shifted (λmax 573 nm) electronic transitions and strongly oxidizing reduction potentials. Electron spin echo envelope modulation and X-ray absorption spectroscopies define square planar Cu(II) sites containing a single His ligand. Restrained molecular dynamics of the cross-ß peptide bilayer architecture support metal ion coordination stabilizing the leaflet interface and indicate that the relatively high reduction potential is not simply the result of distorted coordination geometry (entasis). Cyclic voltammetry (CV) supports a charge-hopping mechanism across multiple copper centers placed 10-12 Å apart within the assembled peptide leaflet interface. This metal-templated scaffold accordingly captures the electron shuttle and cupredoxin functionality in a peptide membrane-localized electron transport chain.

3.
J Am Chem Soc ; 145(48): 26106-26121, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997643

RESUMO

We report the synthesis and characterization of a mononuclear nonheme cobalt(III)-imidyl complex, [Co(NTs)(TQA)(OTf)]+ (1), with an S = 3/2 spin state that is capable of facilitating exogenous substrate modifications. Complex 1 was generated from the reaction of CoII(TQA)(OTf)2 with PhINTs at -20 °C. A flow setup with ESI-MS detection was used to explore the kinetics of the formation, stability, and degradation pathway of 1 in solution by treating the Co(II) precursor with PhINTs. Co K-edge XAS data revealed a distinct shift in the Co K-edge compared to the Co(II) precursor, in agreement with the formation of a Co(III) intermediate. The unusual S = 3/2 spin state was proposed based on EPR, DFT, and CASSCF calculations and Co Kß XES results. Co K-edge XAS and IR photodissociation (IRPD) spectroscopies demonstrate that 1 is a six-coordinate species, and IRPD and resonance Raman spectroscopies are consistent with 1 being exclusively the isomer with the NT ligand occupying the vacant site trans to the TQA aliphatic amine nitrogen atom. Electronic structure calculations (broken symmetry DFT and CASSCF/NEVPT2) demonstrate an S = 3/2 oxidation state resulting from the strong antiferromagnetic coupling of an •NTs spin to the high-spin S = 2 Co(III) center. Reactivity studies of 1 with PPh3 derivatives revealed its electrophilic characteristic in the nitrene-transfer reaction. While the activation of C-H bonds by 1 was proved to be kinetically challenging, 1 could oxidize weak O-H and N-H bonds. Complex 1 is, therefore, a rare example of a Co(III)-imidyl complex capable of exogenous substrate transformations.

4.
Chem Sci ; 14(25): 6915-6929, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389249

RESUMO

Nickel K- and L2,3-edge X-ray absorption spectra (XAS) are discussed for 16 complexes and complex ions with nickel centers spanning a range of formal oxidation states from II to IV. K-edge XAS alone is shown to be an ambiguous metric of physical oxidation state for these Ni complexes. Meanwhile, L2,3-edge XAS reveals that the physical d-counts of the formally NiIV compounds measured lie well above the d6 count implied by the oxidation state formalism. The generality of this phenomenon is explored computationally by scrutinizing 8 additional complexes. The extreme case of NiF62- is considered using high-level molecular orbital approaches as well as advanced valence bond methods. The emergent electronic structure picture reveals that even highly electronegative F-donors are incapable of supporting a physical d6 NiIV center. The reactivity of NiIV complexes is then discussed, highlighting the dominant role of the ligands in this chemistry over that of the metal centers.

6.
Chem Commun (Camb) ; 59(1): 98-101, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36472142

RESUMO

The electronic structures and contrasting reactivity of [Cu(CF3)4]- and [Cu(CF3)3(CH3)]- were probed using coupled cluster and ab initio valence bond calculations. The Cu-C bonds in these complexes were found to be charge shift bonds. A key finding is that electrostatics likely prevent [Cu(CF3)4]- from accessing a productive transition state for C-C bond formation while promote one for [Cu(CF3)3(CH3)]-. These results therefore highlight essential design criteria for Cu-mediated C-C/C-heteroatom bond formation.


Assuntos
Compostos de Cobre Orgânico , Eletricidade Estática
7.
J Am Chem Soc ; 144(49): 22698-22712, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454200

RESUMO

High-valent first-row transition-metal-oxo complexes are important intermediates in biologically and chemically relevant oxidative transformations of organic molecules and in the water splitting reaction in (artificial) photosynthesis. While high-valent Fe- and Mn-oxo complexes have been characterized in detail, much less is known about their analogues with late transition metals. In this study, we present the synthesis and detailed characterization of a unique mononuclear terminal Ni-O complex. This compound, [Ni(TAML)(O)(OH)]3-, is characterized by an intense charge-transfer (CT) band around 730 nm and has an St = 1 ground state, as determined by magnetic circular dichroism spectroscopy. From extended X-ray absorption fine structure (EXAFS), the Ni-O bond distance is 1.84 Å. Ni K edge XAS data indicate that the complex contains a Ni(III) center, which results from an unusually large degree of Ni-O π-bond inversion, with one hole located on the oxo ligand. The complex is therefore best described as a low-spin Ni(III) complex (S = 1/2) with a bound oxyl (O•-) ligand (S = 1/2), where the spins of Ni and oxyl are ferromagnetically coupled, giving rise to the observed St = 1 ground state. This bonding description is roughly equivalent to the presence of a Ni-O single (σ) bond. Reactivity studies show that [Ni(TAML)(O)(OH)]3- is a strong oxidant capable of oxidizing thioanisole and styrene derivatives with large negative ρ values in the Hammett plot, indicating its electrophilic nature. The intermediate also shows high reactivity in C-H bond activation of hydrocarbons with a kinetic isotope effect of 7.0(3) in xanthene oxidation.


Assuntos
Complexos de Coordenação , Ligantes , Oxirredução , Complexos de Coordenação/química
8.
Proc Natl Acad Sci U S A ; 119(30): e2123022119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858422

RESUMO

The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetyl-CoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the NiI species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation.


Assuntos
Aldeído Oxirredutases , Azurina , Ésteres , Complexos Multienzimáticos , Níquel , Origem da Vida , Compostos de Enxofre , Aldeído Oxirredutases/química , Azurina/química , Catálise , Ésteres/síntese química , Modelos Químicos , Complexos Multienzimáticos/química , Níquel/química , Compostos de Enxofre/síntese química
9.
Angew Chem Int Ed Engl ; 61(22): e202202329, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35302701

RESUMO

Dinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber-Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high-spin metal centers; however, iron-dinitrogen coordination chemistry remains dominated by low-valent states, contrasting the enzyme systems. Here, we report a high-spin mixed-valent cis-(µ-1,2-dinitrogen)diiron(I/II) complex [(FeBr)2 (µ-N2 )Lbis ]- (2), where [Lbis ]- is a bis(ß-diketiminate) cyclophane. Field-applied Mössbauer spectra, dc and ac magnetic susceptibility measurements, and computational methods support a delocalized S=7 /2 Fe2 N2 unit with D=-5.23 cm-1 and consequent slow magnetic relaxation.


Assuntos
Ferro , Nitrogenase
10.
Metallomics ; 14(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35090019

RESUMO

Zinc is an essential transition metal nutrient for bacterial survival and growth but may become toxic when present at elevated levels. The Gram-positive bacterial pathogen Streptococcus pneumoniae is sensitive to zinc poisoning, which results in growth inhibition and lower resistance to oxidative stress. Streptococcus pneumoniae has a relatively high manganese requirement, and zinc toxicity in this pathogen has been attributed to the coordination of Zn(II) at the Mn(II) site of the solute-binding protein (SBP) PsaA, which prevents Mn(II) uptake by the PsaABC transport system. In this work, we investigate the Zn(II)-binding properties of pneumococcal PsaA and staphylococcal MntC, a related SBP expressed by another Gram-positive bacterial pathogen, Staphylococcus aureus, which contributes to Mn(II) uptake. X-ray absorption spectroscopic studies demonstrate that both SBPs harbor Zn(II) sites best described as five-coordinate, and metal-binding studies in solution show that both SBPs bind Zn(II) reversibly with sub-nanomolar affinities. Moreover, both SBPs exhibit a strong thermodynamic preference for Zn(II) ions, which readily displace bound Mn(II) ions from these proteins. We also evaluate the Zn(II) competition between these SBPs and the human S100 protein calprotectin (CP, S100A8/S100A9 oligomer), an abundant host-defense protein that is involved in the metal-withholding innate immune response. CP can sequester Zn(II) from PsaA and MntC, which facilitates Mn(II) binding to the SBPs. These results demonstrate that CP can inhibit Zn(II) poisoning of the SBPs and provide molecular insight into how S100 proteins may inadvertently benefit bacterial pathogens rather than the host.


Assuntos
Complexo Antígeno L1 Leucocitário , Manganês , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Complexo Antígeno L1 Leucocitário/metabolismo , Manganês/metabolismo , Streptococcus pneumoniae/metabolismo , Zinco/metabolismo
11.
Inorg Chem ; 60(21): 16074-16078, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672568

RESUMO

MitoNEET, a key regulatory protein in mitochondrial energy metabolism, exhibits a uniquely ligated [2Fe-2S] cluster with one histidine and three cysteines. This unique cluster has been postulated to sense the redox environment and release Fe-S cofactors under acidic pH. Reported herein is a synthetic system that shows how [2Fe-2S] clusters react with protons and rearrange their coordination geometry. The low-temperature stable, site-differentiated clusters [Fe2S2(SPh)3(CF3COO)]2- and [Fe2S2(SPh)3(py)]- have been prepared via controlled protonation below -35 °C and characterized by NMR, UV-vis, and X-ray absorption spectroscopy. Both complexes exhibit anodically shifted redox potentials compared to [Fe2S2(SPh)4]2- and convert to [Fe4S4(SPh)4]2- upon warming to room temperature. The current study provides insight into how mitoNEET releases its [2Fe-2S] in response to highly tuned acidic conditions, the chemistry of which may have further implications in Fe-S biogenesis.


Assuntos
Proteínas Ferro-Enxofre
12.
Chem Sci ; 12(38): 12838-12846, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34703571

RESUMO

We report the synthesis and reactivity of a model of [Fe]-hydrogenase derived from an anthracene-based scaffold that includes the endogenous, organometallic acyl(methylene) donor. In comparison to other non-scaffolded acyl-containing complexes, the complex described herein retains molecularly well-defined chemistry upon addition of multiple equivalents of exogenous base. Clean deprotonation of the acyl(methylene) C-H bond with a phenolate base results in the formation of a dimeric motif that contains a new Fe-C(methine) bond resulting from coordination of the deprotonated methylene unit to an adjacent iron center. This effective second carbanion in the ligand framework was demonstrated to drive heterolytic H2 activation across the Fe(ii) center. However, this process results in reductive elimination and liberation of the ligand to extrude a lower-valent Fe-carbonyl complex. Through a series of isotopic labelling experiments, structural characterization (XRD, XAS), and spectroscopic characterization (IR, NMR, EXAFS), a mechanistic pathway is presented for H2/hydride-induced loss of the organometallic acyl unit (i.e. pyCH2-C[double bond, length as m-dash]O → pyCH3+C[triple bond, length as m-dash]O). The known reduced hydride species [HFe(CO)4]- and [HFe3(CO)11]- have been observed as products by 1H/2H NMR and IR spectroscopies, as well as independent syntheses of PNP[HFe(CO)4]. The former species (i.e. [HFe(CO)4]-) is deduced to be the actual hydride transfer agent in the hydride transfer reaction (nominally catalyzed by the title compound) to a biomimetic substrate ([TolIm](BArF) = fluorinated imidazolium as hydride acceptor). This work provides mechanistic insight into the reasons for lack of functional biomimetic behavior (hydride transfer) in acyl(methylene)pyridine based mimics of [Fe]-hydrogenase.

13.
J Am Chem Soc ; 143(41): 16943-16959, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609879

RESUMO

In this paper, we report the preparation, spectroscopic and theoretical characterization, and reactivity studies of a Co(IV)-oxo complex bearing an N4-macrocyclic coligand, 12-TBC (12-TBC = 1,4,7,10-tetrabenzyl-1,4,7,10-tetraazacyclododecane). On the basis of the ligand and the structure of the Co(II) precursor, [CoII(12-TBC)(CF3SO3)2], one would assume that this species corresponds to a tetragonal Co(IV)-oxo complex, but the spectroscopic data do not support this notion. Co K-edge XAS data show that the treatment of the Co(II) precursor with iodosylbenzene (PhIO) as an oxidant at -40 °C in the presence of a proton source leads to a distinct shift in the Co K-edge, in agreement with the formation of a Co(IV) intermediate. The presence of the oxo group is further demonstrated by resonance Raman (rRaman) spectroscopy. Interestingly, the EPR data of this complex show a high degree of rhombicity, indicating structural distortion. This is further supported by the EXAFS data. Using DFT calculations, a structural model is developed for this complex with a ligand-protonated structure that features a Co═O···HN hydrogen bond and a four-coordinate Co center in a seesaw-shaped coordination geometry. Magnetic circular dichroism (MCD) spectroscopy further supports this finding. The hydrogen bond leads to an interesting polarization of the Co-oxo π-bonds, where one O(p) lone-pair is stabilized and leads to a regular Co(d) interaction, whereas the other π-bond shows an inverted ligand field. The reactivity of this complex in hydrogen atom and oxygen atom transfer reactions is discussed as well.

14.
Inorg Chem ; 60(10): 7228-7239, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33900076

RESUMO

CO2 insertion into tri(µ-hydrido)triiron(II) clusters ligated by a tris(ß-diketiminate) cyclophane is demonstrated to be balanced by sterics for CO2 approach and hydride accessibility. Time-resolved NMR and UV-vis spectra for this reaction for a complex in which methoxy groups border the pocket of the hydride donor (Fe3H3L2, 4) result in a decreased activation barrier and increased kinetic isotope effect consistent with the reduced sterics. For the ethyl congener Fe3H3L1 (2), no correlation is found between rate and reaction solvent or added Lewis acids, implying CO2 coordination to an Fe center in the mechanism. The estimated hydricity (50 kcal/mol) based on observed H/D exchange with BD3 requires Fe-O bond formation in the product to offset an endergonic CO2 insertion. µ3-hydride coordination is noted to lower the activation barrier for the first CO2 insertion event in DFT calculations.

15.
J Am Chem Soc ; 143(15): 5649-5653, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33830763

RESUMO

Reduction of a tricobalt(II) tri(bromide) cluster supported by a tris(ß-diketiminate) cyclophane results in halide loss, ligand compression, and metal-metal bond formation to yield a 48-electron CoI3 cluster, Co3LEt/Me (2). Upon reaction of 2 with dinitrogen, all metal-metal bonds are broken, steric conflicts are relaxed, and dinitrogen is incorporated within the internal cavity to yield a formally (µ3-η1:η2:η1-dinitrogen)tricobalt(I) complex, 3. Broken symmetry DFT calculations (PBE0/def2-tzvp/D3) support an N-N bond order of 2.1 in the bound N2 with the calculated N-N stretching frequency (1743 cm-1) comparable to the experimental value (1752 cm-1). Reduction of 3 under Ar in the presence of Me3SiBr results in N2 scission with tris(trimethylsilyl)amine afforded in good yield.

16.
Angew Chem Int Ed Engl ; 59(32): 13581-13585, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32358999

RESUMO

A mononuclear nonheme cobalt(III) iodosylbenzene complex, [CoIII (TQA)(OIPh)(OH)]2+ (1), is synthesized and characterized structurally and spectroscopically. While 1 is a sluggish oxidant in oxidation reactions, it becomes a competent oxidant in oxygen atom transfer reactions, such as olefin epoxidation, in the presence of a small amount of proton. More interestingly, 1 shows a nucleophilic reactivity in aldehyde deformylation reaction, demonstrating that 1 has an amphoteric reactivity. Another interesting observation is that 1 can be used as an oxygen atom donor in the generation of high-valent metal-oxo complexes. To our knowledge, we present the first crystal structure of a CoIII iodosylbenzene complex and the unprecedented reactivity of metal-iodosylarene adduct.

17.
Dalton Trans ; 48(47): 17441-17444, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31750844

RESUMO

A mononuclear W(iv) bis-dithiolene complex stabilized by an oxo ligand shows a reductive reactivity toward CO2, from which formate and a dinuclear W(v) complex are generated. An unusual structural rearrangement was observed during the reaction. Structural and spectroscopic characterization for a novel triply bridged dinuclear W(v) complex is reported.


Assuntos
Dióxido de Carbono/química , Complexos de Coordenação/química , Formiatos/síntese química , Compostos de Sulfidrila/química , Tungstênio/química , Biomimética , Complexos de Coordenação/síntese química , Formiatos/química , Modelos Moleculares , Estrutura Molecular
18.
Chem Sci ; 10(3): 918-929, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30774886

RESUMO

Fixation and chemical reduction of CO2 are important for utilization of this abundant resource, and understanding the detailed mechanism of C-O cleavage is needed for rational development of CO2 reduction methods. Here, we describe a detailed analysis of the mechanism of the reaction of a masked two-coordinate cobalt(i) complex, L tBuCo (where L tBu = 2,2,6,6-tetramethyl-3,5-bis[(2,6-diisopropylphenyl)imino]hept-4-yl), with CO2, which yields two products of C-O cleavage, the cobalt(i) monocarbonyl complex L tBuCo(CO) and the dicobalt(ii) carbonate complex (L tBuCo)2(µ-CO3). Kinetic studies and computations show that the κN,η6-arene isomer of L tBuCo rearranges to the κ2 N,N' binding mode prior to binding of CO2, which contrasts with the mechanism of binding of other substrates to L tBuCo. Density functional theory (DFT) studies show that the only low-energy pathways for cleavage of CO2 proceed through bimetallic mechanisms, and DFT and highly correlated domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) calculations reveal the cooperative effects of the two metal centers during facile C-O bond rupture. A plausible intermediate in the reaction of CO2 with L tBuCo is the oxodicobalt(ii) complex L tBuCoOCoL tBu, which has been independently synthesized through the reaction of L tBuCo with N2O. The rapid reaction of L tBuCoOCoL tBu with CO2 to form the carbonate product indicates that the oxo species is kinetically competent to be an intermediate during CO2 cleavage by L tBuCo. L tBuCoOCoL tBu is a novel example of a thoroughly characterized molecular cobalt-oxo complex where the cobalt ions are clearly in the +2 oxidation state. Its nucleophilic reactivity is a consequence of high charge localization on the µ-oxo ligand between two antiferromagnetically coupled high-spin cobalt(ii) centers, as characterized by DFT and multireference complete active space self-consistent field (CASSCF) calculations.

19.
Inorg Chem ; 58(14): 8969-8982, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30788970

RESUMO

Nickel-containing enzymes such as methyl coenzyme M reductase (MCR) and carbon monoxide dehydrogenase/acetyl coenzyme A synthase (CODH/ACS) play a critical role in global energy conversion reactions, with significant contributions to carbon-centered processes. These enzymes are implied to cycle through a series of nickel-based organometallic intermediates during catalysis, though identification of these intermediates remains challenging. In this work, we have developed and characterized a nickel-containing metalloprotein that models the methyl-bound organometallic intermediates proposed in the native enzymes. Using a nickel(I)-substituted azurin mutant, we demonstrate that alkyl binding occurs via nucleophilic addition of methyl iodide as a methyl donor. The paramagnetic NiIII-CH3 species initially generated can be rapidly reduced to a high-spin NiII-CH3 species in the presence of exogenous reducing agent, following a reaction sequence analogous to that proposed for ACS. These two distinct bioorganometallic species have been characterized by optical, EPR, XAS, and MCD spectroscopy, and the overall mechanism describing methyl reactivity with nickel azurin has been quantitatively modeled using global kinetic simulations. A comparison between the nickel azurin protein system and existing ACS model compounds is presented. NiIII-CH3 Az is only the second example of two-electron addition of methyl iodide to a NiI center to give an isolable species and the first to be formed in a biologically relevant system. These results highlight the divergent reactivity of nickel across the two intermediates, with implications for likely reaction mechanisms and catalytically relevant states in the native ACS enzyme.


Assuntos
Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Níquel/química , Compostos Organometálicos/química , Azurina/genética , Azurina/metabolismo , Catálise , Cromatografia Gasosa , Regulação Bacteriana da Expressão Gênica , Cinética , Fenômenos Magnéticos , Mutação , Compostos Organometálicos/metabolismo , Pseudomonas aeruginosa/enzimologia , Análise Espectral
20.
Inorganics (Basel) ; 7(7)2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38046130

RESUMO

A disulfide-bridged peptide containing two Ni2+ binding sites based on the nickel superoxide dismutase protein, {Ni2(SODmds)}, has been prepared. At physiological pH (7.4) it was found that the metal sites are mononuclear with a square planar NOS2 coordination environment with the two sulfur-based ligands derived from cysteinate residues, the nitrogen ligand derived from the amide backbone and a water ligand. Furthermore, S K-edge X-ray absorption spectroscopy indicated that the two cysteinate sulfur atoms ligated to nickel are each protonated. Elevation of the pH to 9.6 results in the deprotonation of the cysteinate sulfur atoms, and yields a binuclear, cysteinate bridged Ni22+ center with each nickel contained in a distorted square planar geometry. At both pH = 7.4 and 9.6 the nickel sites are moderately air sensitive, yielding intractable oxidation products. However, at pH = 9.6 {Ni2(SODmds)} reacts with O2 at an ~3.5-fold faster rate than at pH = 7.4. Electronic structure calculations indicate the reduced reactivity at pH = 7.4 is a result of a reduction in S(3p) character and deactivation of the nucleophilic frontier molecular orbitals upon cysteinate sulfur protonation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...