Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876913

RESUMO

OBJECTIVES: Ultrasound imaging (USI) is the gold standard in the clinical diagnosis of thyroid diseases. Compared with two-dimensional (2D) USI, three-dimensional (3D) USI could provide more structural information. However, the unstable pressure generated by the hand-hold ultrasound probe scanning can cause tissue deformation, especially in soft tissues such as the thyroid. The deformation is manifested as tissue structure being compressed in 2D USI, which results in structural discontinuity in 3D USI. Furthermore, multiple scans apply pressure in different directions to the tissue, which will cause relative displacement between the 3D images obtained from multiple thyroid scans. METHODS: In this work, we proposed a framework to minimize the influence of the variation of pressure in thyroid 3D USI. To correct pressure artifacts in a single scanning sequence, an adaptive method to smooth the position of the 2D ultrasound (US) image sequence is adopted before performing volumetric reconstruction. To build a whole 3D US image including both sides of the thyroid gland, an iterative closest point (ICP) based registration pipeline is adopted to eliminate the relative displacement caused by different pressure directions. RESULTS: Our proposed method was validated by in vivo experiments, including healthy volunteers and volunteers with thyroid nodules at different grading levels. CONCLUSIONS: The thyroid gland and nodule are rendered intelligently in the whole scanning region to facilitate the observation of 3D USI results by the doctor. This work might make a positive contribution to the clinical diagnosis of diseases of the thyroid or other soft tissues.

2.
Ultrason Imaging ; : 1617346241259049, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38903053

RESUMO

Three-dimensional (3D) ultrasound imaging can be accomplished by reconstructing a sequence of two-dimensional (2D) ultrasound images. However, 2D ultrasound images usually suffer from low resolution in the elevation direction, thereby impacting the accuracy of 3D reconstructed results. The lateral resolution of 2D ultrasound is known to significantly exceed the elevation resolution. By combining scanning sequences acquired from orthogonal directions, the effects of poor elevation resolution can be mitigated through a composite reconstructing process. Moreover, capturing ultrasound images from multiple perspectives necessitates a precise probe positioning method with a wide angle of coverage. Optical tracking is popularly used for probe positioning for its high accuracy and environment-robustness. In this paper, a novel large-angle accurate optical positioning method is used for enhancing resolution in 3D ultrasound imaging through orthogonal-view scanning and composite reconstruction. Experiments on two phantoms proved that our method could significantly improve reconstruction accuracy in the elevation direction of the probe compared with single-angle parallel scanning. The results indicate that our method holds the potential to improve current 3D ultrasound imaging techniques.

3.
J Imaging Inform Med ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536588

RESUMO

Breast cancer has a high incidence and mortality rate among women, early diagnosis is essential as it gives insight regarding the most appropriate therapeutic strategy for each case. Among all imaging diagnostic methods, digital breast tomosynthesis (DBT) is effective for early breast cancer detection. In DBT images, high-density object artifacts are generated when imaging objects with high X-ray absorptivity, which include metal artifacts, ripple artifacts, and deformation artifacts. In this study, we analyze the causes of these artifacts and propose a set of high-density object reconstruction methods based on iterative algorithms. Our method includes a reprojection-based high-density object projection data segmentation algorithm and an iterative reconstruction algorithm based on volume expansion. The experiments on simulation data and the human breast data with artificial surgical needles prove the effectiveness of our method. By using our algorithm, the problem of distorting the shape, size, and position of high-density objects during DBT reconstruction is raised, the influence of these artifacts is reduced, and the quality of the DBT reconstructed image is improved. We hope that our algorithm might contribute to promoting the usage of DBT.

4.
Ultrason Imaging ; 46(2): 90-101, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38041446

RESUMO

Vascular diseases may occur in the upper extremities, and the lesions can span the entire length of the blood vessel. One of the most popular methods to identify vascular disorders is ultrasound Doppler imaging. However, traditional two-dimensional (2D) ultrasound Doppler imaging cannot capture the entire length of a long vessel in one image. Medical professionals often have to painstakingly reconstruct three-dimensional (3D) data using 2D ultrasound images to locate the lesions, especially for large blood vessels. 3D ultrasound Doppler imaging can display the morphological structure of blood vessels and the distribution of lesions more directly, providing a more comprehensive view compared to 2D imaging. In this work, we propose a wide-range 3D volumetric ultrasound Doppler imaging system with dual modality, in which a high-definition camera is adopted to automatically track the movement of the ultrasound transducer, simultaneously capturing a corresponding sequence of 2D ultrasound Doppler images. We conducted experiments on human arms using our proposed system and separately with X-ray computerized tomography (X-CT). The comparison results prove the potential value of our proposed system in the diagnosis of arm vascular diseases.


Assuntos
Imageamento Tridimensional , Doenças Vasculares , Humanos , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Tomografia Computadorizada por Raios X/métodos
5.
J Med Imaging (Bellingham) ; 10(6): 066002, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074631

RESUMO

Purpose: The purpose of this study is to develop a freehand scan three-dimensional (3D) shear wave elasticity imaging (SWEI) method for characterizing the anisotropy of elastic properties in biological tissues. The motivation behind this work lies in addressing the limitations of traditional two-dimensional (2D) SWEI, which only measures shear wave speeds in a single direction, as well as fulfilling the clinical demand for improved medical imaging. Approach: Our imaging system utilizes a high-definition optical camera to continuously track the ultrasonic transducer, collecting spatial position-angle data of the transducer and corresponding two-dimensional SWEI data. By reconstructing three-dimensional SWEI images using these data, we achieved freehand SWEI. Results: We validated the accuracy of 2D SWEI on a standard elastic phantom, and then performed 3D SWEI on the pork tenderloin and the triceps brachii of two volunteers. We obtained shear wave speed of 1.82 to 3.12 m/s in the pork tenderloin, shear wave speed of 1.16 to 2.36 m/s in the triceps brachii of non-exercising volunteers, and shear wave speed of 0.55 to 1.63 m/s in the triceps brachii of exercising volunteers, and the maximum shear wave speed directions were generally aligned with the orientation of muscle fibers. Conclusions: We proposed a method that can overcome the limitations of 2D-SWEI regarding imaging angle while also extending the imaging angle of 3D-SWEI, which could have significant implications for improving the accuracy and safety of medical diagnoses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...