Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Dev Cogn Neurosci ; 57: 101147, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030675

RESUMO

Substance use escalates between adolescence and young adulthood, and most experimentation occurs among peers. To understand underlying mechanisms, research has focused on neural response during relevant psychological processes. Functional magnetic resonance imaging (fMRI) research provides a wealth of information about brain activity when processing monetary rewards; however, most studies have used tasks devoid of social stimuli. Given that adolescent neurodevelopment is sculpted by the push-and-pull of peers and emotions, identifying neural substrates is important for intervention. We systematically reviewed 28 fMRI studies examining substance use and neural responses to stimuli including social reward, emotional faces, social influence, and social stressors. We found substance use was positively associated with social-reward activity (e.g., in the ventral striatum), and negatively with social-stress activity (e.g., in the amygdala). For emotion, findings were mixed with more use linked to heightened response (e.g., in amygdala), but also with decreased response (e.g., in insula). For social influence, evidence supported both positive (e.g., cannabis and nucleus accumbens during conformity) and negative (e.g., polydrug and ventromedial PFC during peers' choices) relations between activity and use. Based on the literature, we offer recommendations for future research on the neural processing of social information to better identify risks for substance use.


Assuntos
Encéfalo , Transtornos Relacionados ao Uso de Substâncias , Adolescente , Humanos , Adulto Jovem , Adulto , Encéfalo/fisiologia , Emoções/fisiologia , Comportamento Social , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Recompensa
2.
ACS Nano ; 11(1): 1091-1102, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28071898

RESUMO

To construct reliable nanoelectronic devices based on emerging 2D layered semiconductors, we need to understand the charge-trapping processes in such devices. Additionally, the identified charge-trapping schemes in such layered materials could be further exploited to make multibit (or highly desirable analog-tunable) memory devices. Here, we present a study on the abnormal charge-trapping or memory characteristics of few-layer WSe2 transistors. This work shows that multiple charge-trapping states with large extrema spacing, long retention time, and analog tunability can be excited in the transistors made from mechanically exfoliated few-layer WSe2 flakes, whereas they cannot be generated in widely studied few-layer MoS2 transistors. Such charge-trapping characteristics of WSe2 transistors are attributed to the exfoliation-induced interlayer deformation on the cleaved surfaces of few-layer WSe2 flakes, which can spontaneously form ambipolar charge-trapping sites. Our additional results from surface characterization, charge-retention characterization at different temperatures, and density functional theory computation strongly support this explanation. Furthermore, our research also demonstrates that the charge-trapping states excited in multiple transistors can be calibrated into consistent multibit data storage levels. This work advances the understanding of the charge memory mechanisms in layered semiconductors, and the observed charge-trapping states could be further studied for enabling ultralow-cost multibit analog memory devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...