Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Cell Mol Immunol ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379603

RESUMO

The potential of macrophage-mediated phagocytosis as a cancer treatment is promising. Blocking the CD47-SIRPα interaction with a CD47-specific antibody significantly enhances macrophage phagocytosis. However, concerns regarding their toxicity to nontumor cells remain substantial. Here, we engineered chimeric antigen receptor macrophages (CAR-Ms) by fusing a humanized single-chain variable fragment with FcγRIIa and integrating short hairpin RNA to silence SIRPα, thereby disrupting the CD47-SIRPα signaling pathway. These modified CAR-shSIRPα-M cells exhibited an M1-like phenotype, superior phagocytic function, substantial cytotoxic effects on HER2-positive tumor cells, and the ability to eliminate patient-derived organoids. In vivo, CAR-M cells significantly inhibited tumor growth and prolonged survival in tumor-bearing mice. Notably, CAR-shSIRPα-M cells enhanced cytotoxic T-cell infiltration into tumors, thereby enhancing the antitumor response in both the humanized immune system mouse model and immunocompetent mice. Mechanistically, SIRPα inhibition activated inflammatory pathways and the cGAS-STING signaling cascade in CAR-M cells, leading to increased production of proinflammatory cytokines, reactive oxygen species, and nitric oxide, thereby enhancing their antitumor effects. These findings underscore the potential of SIRPα inhibition as a novel strategy to increase the antitumor efficacy of CAR-M cells in cancer immunotherapy, particularly against solid tumors.

2.
Phys Rev E ; 110(3-1): 034413, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39425372

RESUMO

Transcription is a stochastic process that involves several downstream operations which make it difficult to model and infer transcription kinetics from mature RNA numbers in individual cell. However, recent advances in single-cell technologies have enabled a more precise measurement of the fluctuations of nascent RNA that closely reflect transcription kinetics. In this paper we introduce a general stochastic model to mimic nascent RNA kinetics with complex promoter architecture. We derive the exact distribution and moments of nascent RNA using queuing theory techniques, which provide valuable insights into the effect of the molecular memory created by the multistep activation and deactivation on the stochastic kinetics of nascent RNA. Moreover, based on the analytical results, we develop a statistical method to infer the promoter memory from stationary nascent RNA distributions. Data analysis of synthetic data and a realistic example, the HIV-1 gene, verifies the validity of this inference method.


Assuntos
Modelos Genéticos , Regiões Promotoras Genéticas , RNA , Processos Estocásticos , Cinética , RNA/metabolismo , RNA/genética , Transcrição Gênica , HIV-1/genética , HIV-1/metabolismo
3.
Cancer Cell Int ; 24(1): 303, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218854

RESUMO

Prostate cancer (PCa) is one of the most common and prevalent cancers in men worldwide. The majority of PCa-related deaths result from metastasis rather than primary tumors. Several studies have focused on the relationship between male-specific genes encoded on the Y chromosome and PCa metastasis; however, the relationship between the male specific protein encoded on the Y chromosome and tumor suppression has not been fully clarified. Here, we report a male specific protein of this type, the histone H3 lysine 4 (H3K4) demethylase JARID1D, which has the ability to inhibit the gene expression program related to cell invasion, and can thus form a phenotype that inhibits the invasion of PCa cells. However, JARID1D exhibits low expression level in advanced PCa, and which is related to rapid invasion and metastasis in patients with PCa. Curcumin, as a multi-target drug, can enhance the expression and demethylation activity of JARID1D, affect the androgen receptor (AR) and epithelial-mesenchymal transition (EMT) signaling cascade, and inhibit the metastatic potential of castration resistant cancer (CRPC). These findings suggest that using curcumin to increase the expression and demethylation activity of JARID1D may be a feasible strategy to inhibit PCa metastasis by regulating EMT and AR.

4.
Int J Biol Sci ; 20(10): 3881-3891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113714

RESUMO

Leucine-rich repeat-containing 8A (LRRC8A) is a key component of the volume-regulated anion channel (VRAC) that influences essential homeostatic processes in various immune cells. These processes include the regulation of cell volume and membrane potential and the facilitation of the transport of organic agents used as anticancer drugs and immune-stimulating factors. Therefore, understanding the structure-function relationship of LRRC8A, exploring its physiological role in immunity, assessing its efficacy in treating diseases, and advancing the development of compounds that regulate its activity are important research frontiers. This review emphasized the emerging field of LRRC8A, outlined its structure and function, and summarized its role in immune cell development and immune cell-mediated antiviral and antitumor effects. Additionally, it explored the potential of LRRC8A as an immunotherapeutic target, offering insights into resolving persistent challenges and future research directions.


Assuntos
Imunoterapia , Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Animais
5.
Cancer Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137404

RESUMO

Prostate cancer (PCa) rarely responds to immune-checkpoint blockade (ICB) therapies. Cancer-associated fibroblasts (CAFs) are critical components of the immunologically "cold" tumor microenvironment and are considered a promising target to enhance the immunotherapy response. In this study, we aimed to reveal the mechanisms regulating CAF plasticity to identify potential strategies to switch CAFs from pro-tumorigenic to anti-tumor phenotypes and enhance ICB efficacy in PCa. Integration of four PCa single-cell RNA-sequencing datasets defined pro-tumorigenic and anti-tumor CAFs, and RNA-seq, flow cytometry, and a PCa organoid model demonstrated the functions of two CAF subtypes. Extracellular matrix-associated CAFs (ECM-CAF) promoted collagen deposition and cancer cell progression, and lymphocyte-associated CAFs (Lym-CAF) exhibited an anti-tumor phenotype and induced the infiltration and activation of CD8+ T cells. YAP1 activity regulated the ECM-CAF phenotype, and YAP1 silencing promoted switching to Lym-CAFs. NF-κB p65 was the core transcription factor in the Lym-CAF subset, and YAP1 inhibited nuclear translocation of p65. Selective depletion of YAP1 in ECM-CAFs in vivo promoted CD8+ T-cell infiltration and activation and enhanced the therapeutic effects of anti- PD-1 treatment in PCa. Overall, this study revealed a mechanism regulating CAF identity in PCa and highlighted a therapeutic strategy for altering the CAF subtype to suppress tumor growth and increase sensitivity to ICB.

6.
Adv Sci (Weinh) ; 11(33): e2401095, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38946578

RESUMO

Conventional androgen deprivation therapy (ADT) targets the androgen receptor (AR) inhibiting prostate cancer (PCa) progression; however, it can eventually lead to recurrence as castration-resistant PCa (CRPC), which has high mortality rates and lacks effective treatment modalities. The study confirms the presence of high glutathione peroxidase 4 (GPX4) expression, a key regulator of ferroptosis (i.e., iron-dependent program cell death) in CRPC cells. Therefore, inducing ferroptosis in CRPC cells might be an effective therapeutic modality for CRPC. However, nonspecific uptake of ferroptosis inducers can result in undesirable cytotoxicity in major organs. Thus, to precisely induce ferroptosis in CRPC cells, a genetic engineering strategy is proposed to embed a prostate-specific membrane antigen (PSMA)-targeting antibody fragment (gy1) in the macrophage membrane, which is then coated onto mesoporous polydopamine (MPDA) nanoparticles to produce a biomimetic nanoplatform. The results indicate that the membrane-coated nanoparticles (MNPs) exhibit high specificity and affinity toward CRPC cells. On further encapsulation with the ferroptosis inducers RSL3 and iron ions, MPDA/Fe/RSL3@M-gy1 demonstrates superior synergistic effects in highly targeted ferroptosis therapy eliciting significant therapeutic efficacy against CRPC tumor growth and bone metastasis without increased cytotoxicity. In conclusion, a new therapeutic strategy is reported for the PSMA-specific, CRPC-targeting platform for ferroptosis induction with increased efficacy and safety.


Assuntos
Ferroptose , Nanopartículas , Neoplasias de Próstata Resistentes à Castração , Ferroptose/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Masculino , Camundongos , Animais , Nanopartículas/química , Humanos , Linhagem Celular Tumoral , Engenharia Genética/métodos , Modelos Animais de Doenças , Glutamato Carboxipeptidase II/genética , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície
7.
Exp Neurol ; 379: 114848, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38857749

RESUMO

The establishment of reliable human brain models is pivotal for elucidating specific disease mechanisms and facilitating the discovery of novel therapeutic strategies for human brain disorders. Human induced pluripotent stem cell (iPSC) exhibit remarkable self-renewal capabilities and can differentiate into specialized cell types. This makes them a valuable cell source for xenogeneic or allogeneic transplantation. Human-mouse chimeric brain models constructed from iPSC-derived brain cells have emerged as valuable tools for modeling human brain diseases and exploring potential therapeutic strategies for brain disorders. Moreover, the integration and functionality of grafted stem cells has been effectively assessed using these models. Therefore, this review provides a comprehensive overview of recent progress in differentiating human iPSC into various highly specialized types of brain cells. This review evaluates the characteristics and functions of the human-mouse chimeric brain model. We highlight its potential roles in brain function and its ability to reconstruct neural circuitry in vivo. Additionally, we elucidate factors that influence the integration and differentiation of human iPSC-derived brain cells in vivo. This review further sought to provide suitable research models for cell transplantation therapy. These research models provide new insights into neuropsychiatric disorders, infectious diseases, and brain injuries, thereby advancing related clinical and academic research.


Assuntos
Encéfalo , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Encéfalo/citologia , Camundongos , Diferenciação Celular/fisiologia , Quimera , Modelos Animais de Doenças , Encefalopatias/terapia
8.
Cancer Lett ; 597: 217073, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38906523

RESUMO

Neoadjuvant immunotherapy has shown promising clinical activity in the treatment of early non-small cell lung cancer (NSCLC); however, further clarification of the specific mechanism and identification of biomarkers are imperative prior to implementing it as a daily practice. The study investigated the reprogramming of T cells in both tumor and peripheral blood following neoadjuvant chemoimmunotherapy in a preclinical NSCLC mouse model engrafted with a human immune system. Samples were also collected from 21 NSCLC patients (Stage IA-IIIB) who received neoadjuvant chemoimmunotherapy, and the dynamics of potential biomarkers within these samples were measured and further subjected to correlation analysis with prognosis. Further, we initially investigated the sources of the potential biomarkers. We observed in the humanized mouse model, neoadjuvant chemoimmunotherapy could prevent postoperative recurrence and metastasis by increasing the frequency and cytotoxicity of CD8+ T cells in both peripheral blood (p < 0.001) and tumor immune microenvironment (TIME) (p < 0.001). The kinetics of peripheral CD8+PD-1+ T cells reflected the changes in the TIME and pathological responses, ultimately predicting survival outcome of mice. In the clinical cohort, patients exhibiting an increase in these T cells post-treatment had a higher rate of complete or major pathological response (p < 0.05) and increased immune infiltration (p = 0.0012, r = 0.792). We identified these T cells originating from tumor draining lymph nodes and subsequently entering the TIME. In conclusion, the kinetics of peripheral CD8+PD-1+ T cells can serve as a predictor for changes in TIME and optimal timing for surgery, ultimately reflecting the outcomes of neoadjuvant chemoimmunotherapy in both preclinical and clinical setting.


Assuntos
Biomarcadores Tumorais , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Terapia Neoadjuvante , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Linfócitos T CD8-Positivos/imunologia , Terapia Neoadjuvante/métodos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Feminino , Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Masculino , Microambiente Tumoral/imunologia , Pessoa de Meia-Idade , Idoso , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Andrology ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436139

RESUMO

BACKGROUND: As a component of the nucleosome remodeling and deacetylating (NuRD) complex, metastasis-associated protein 1 (MTA1) has been reported to be abundant in male reproductive system and might participate in spermatogenesis and sperm maturation, whereas the precise functional role of MTA1 in these processes is still undetermined. OBJECTIVE: To investigate the effect and potential function of MTA1 in male fertility. MATERIALS AND METHODS: Mta1 knockout mice (Mta1-/- ) were employed to detect their reproductive phenotype. The pH value of Mta1-/- epididymal luminal fluid was measured, and the potential mechanism of MTA1 involved in regulating luminal acidification was detected in vivo and in vitro. A vasectomy model with abnormal pH of epididymal lumen was established to further detect the effect of MTA1 on epididymal luminal microenvironment. RESULTS: Mta1-/- mice were fertile without any detectable defects in spermatogenesis or sperm motility while the deficiency of MTA1 could acidify the initial segment of epididymis to a certain extent. MTA1 could interact with estrogen receptor alpha (ERα) and inhibit the transcription of ERα target gene, hydrogen exchanger 3 (NHE3), and ultimately affect the epididymal luminal milieu. After vasectomy, the Mta1-/- mice presented a more acidic epididymal lumen which was closer to the normal state compared to the wild-type model. DISCUSSION AND CONCLUSION: MTA1 is dispensable for male fertility in mice, but plays a potentially important function in regulating luminal acidification of the epididymis.

10.
Cancer Immunol Immunother ; 73(3): 48, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349393

RESUMO

Monoamine oxidase A (MAOA) is a membrane-bound mitochondrial enzyme present in almost all vertebrate tissues that catalyzes the degradation of biogenic and dietary-derived monoamines. MAOA is known for regulating neurotransmitter metabolism and has been implicated in antitumor immune responses. In this review, we retrospect that MAOA inhibits the activities of various types of tumor-associated immune cells (such as CD8+ T cells and tumor-associated macrophages) by regulating their intracellular monoamines and metabolites. Developing novel MAOA inhibitor drugs and exploring multidrug combination strategies may enhance the efficacy of immune governance. Thus, MAOA may act as a novel immune checkpoint or immunomodulator by influencing the efficacy and effectiveness of immunotherapy. In conclusion, MAOA is a promising immune target that merits further in-depth exploration in preclinical and clinical settings.


Assuntos
Monoaminoxidase , Neoplasias , Humanos , Adjuvantes Imunológicos , Aminas , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos , Neoplasias/tratamento farmacológico
11.
Animal Model Exp Med ; 7(1): 12-23, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018458

RESUMO

Traumatic brain injury (TBI) is the main cause of disability, mental health disorder, and even death, with its incidence and social costs rising steadily. Although different treatment strategies have been developed and tested to mitigate neurological decline, a definitive cure for these conditions remains elusive. Studies have revealed that various neurotrophins represented by the brain-derived neurotrophic factor are the key regulators of neuroinflammation, apoptosis, blood-brain barrier permeability, neurite regeneration, and memory function. These factors are instrumental in alleviating neuroinflammation and promoting neuroregeneration. In addition, neural stem cells (NSC) contribute to nerve repair through inherent neuroprotective and immunomodulatory properties, the release of neurotrophins, the activation of endogenous NSCs, and intercellular signaling. Notably, innovative research proposals are emerging to combine BDNF and NSCs, enabling them to synergistically complement and promote each other in facilitating injury repair and improving neuron differentiation after TBI. In this review, we summarize the mechanism of neurotrophins in promoting neurogenesis and restoring neural function after TBI, comprehensively explore the potential therapeutic effects of various neurotrophins in basic research on TBI, and investigate their interaction with NSCs. This endeavor aims to provide a valuable insight into the clinical treatment and transformation of neurotrophins in TBI, thereby promoting the progress of TBI therapeutics.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Neurais , Humanos , Doenças Neuroinflamatórias , Células-Tronco Neurais/transplante , Lesões Encefálicas Traumáticas/terapia , Neurogênese/fisiologia , Regeneração Nervosa
12.
Int J Biol Macromol ; 258(Pt 1): 128848, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114003

RESUMO

The survival benefit for patients with gastric cancer (GC) is modest due to its high transfer potential. Targeted therapy for metastasis-related genes in GC may be a viable approach, however, inhibitors specifically targeting GC are limited. In this study, GC patient-derived xenografts (PDX) with metastatic burden were established via orthotopic transplantation. PCR-Array analysis of primary and metastatic tumors revealed EPH receptor B2 (EPHB2) as the most significantly upregulated gene. The interaction between the EPHB2 receptor and its cognate-specific EFNB1 ligands was high in GC and correlated with a poor prognosis. Fc-EFNB1 treatment increased the invasion and migration abilities of GC cells and induced a high EPHB2 expression. EPHB2 knockdown in GC cells completely abolished the ephrin ligand-induced effects on invasion and migration abilities. Signal transduction analysis revealed Wnt/ß-catenin and FAK as downstream signaling mediators potentially inducing the EPHB2 phenotype. In conclusion, the observed deregulation of EPHB2/EFNB1 expression in GC enhances the invasive phenotype, suggesting a potential role of EPHB2/EFNB1 compound in local tumor cell invasion and the formation of metastasis.


Assuntos
Receptor EphB2 , Neoplasias Gástricas , Humanos , Receptor EphB2/genética , Receptor EphB2/metabolismo , Neoplasias Gástricas/patologia , Efrina-B1/genética , Efrina-B1/metabolismo , beta Catenina/metabolismo , Ligantes , Via de Sinalização Wnt , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
13.
Mol Pharm ; 20(12): 6226-6236, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37955533

RESUMO

Prostate cancer (PCa) is considered to be the most prevalent malignancy in males worldwide. Abiraterone is a 17α-hydroxylase/C17, 20-lyase (CYP17) inhibitor that has been approved for use in patients with prostate cancer. However, several negative aspects, such as drug resistance, toxicity, and lack of real-time monitoring of treatment responses, could appear with long-term use. Therefore, the development of anticancer agents with specific targeting to avoid side effects is imperative. Here, we used MHI-148, a type of heptamethine cyanine (HC) near-infrared fluorescence dye (NIRF), as a prototype structure to synthesize two theranostic agents, Abi-DZ-1 and Abi-783. The new compound Abi-DZ-1 retained the excellent photophysical characteristics and NIRF imaging property of MHI-148, and it could preferentially accumulate in prostate cancer cells but not in normal prostate epithelial cells via the HIF1α/organic anion-transporting polypeptides axis. NIRF imaging using Abi-DZ-1 selectively identified tumors in mice bearing PCa xenografts. Moreover, Abi-DZ-1 treatment significantly retarded the tumor growth in both a cell-derived xenograft model and a patient-derived tumor xenograft model. This finding demonstrated that Abi-DZ-1 may hold promise as a potential multifunctional theranostic agent for future tumor-targeted imaging and precision therapy. Constructing theranostic agents using the NIRF dye platform holds great promise in accurate therapy and intraoperative navigation.


Assuntos
Transportadores de Ânions Orgânicos , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Carbocianinas/química , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
14.
Animal Model Exp Med ; 6(5): 409-418, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37890865

RESUMO

BACKGROUND: Patients with pancreatic ductal adenocarcinoma (PDAC) who undergo surgical resection and receive effective chemotherapy have the best chance for long-term survival. Unfortunately, because of the heterogeneity of pancreatic cancer, it is difficult to find a personalized treatment strategy for patients. Organoids are ideal preclinical models for personalized medicine. Therefore, we explore the cultivation conditions and construction methods of PDAC organoid models to screen the individualized therapy strategy. METHODS: Fresh PDAC tissues from surgical resection were collected and digested with digestive enzymes; then the tumor cells were embedded in Matrigel with a suitable medium to establish the PDAC organoid models. The genetic stability of the organoids was analyzed using whole exon sequencing; hematoxylin and eosin staining and immunohistochemistry of organoids were performed to analyze their consistency with the pathological morphology of the patient's tumor tissue; After 2 days of organoid culture, we selected four commonly used clinical chemotherapy drugs for single or combined treatment to analyze drug sensitivity. RESULTS: Two cases of PDAC organoid models were successfully established, and the results of their pathological characteristics and exome sequencing were consistent with those of the patient's tumor tissue. Both PDAC organoids showed more sensitivity to gemcitabine and cisplatin, and the combined treatment was more effective than monotherapy. CONCLUSION: Both organoids better retained the pathological characteristics, genomic stability, and heterogeneity with the original tumor. Individual PDAC organoids exhibited different sensitivities to the same drugs. Thus, this study provided ideal experimental models for screening individualized therapy strategy for patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Medicina de Precisão , Organoides/patologia , Neoplasias Pancreáticas
15.
Biophys J ; 122(20): 4023-4041, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37653725

RESUMO

The mRNA life cycle is a complex biochemical process, involving transcription initiation, elongation, termination, splicing, and degradation. Each of these molecular events is multistep and can create a memory. The effect of this molecular memory on gene expression is not clear, although there are many related yet scattered experimental reports. To address this important issue, we develop a general theoretical framework formulated as a master equation in the sense of queue theory, which can reduce to multiple previously studied gene models in limiting cases. This framework allows us to interpret experimental observations, extract kinetic parameters from experimental data, and identify how the mRNA kinetics vary under regulatory influences. Notably, it allows us to evaluate the influences of elongation processes on mature RNA distribution; e.g., we find that the non-exponential elongation time can induce the bimodal mRNA expression and there is an optimal elongation noise intensity such that the mature RNA noise achieves the lowest level. In a word, our framework can not only provide insight into complex mRNA life processes but also bridge a dialogue between theoretical studies and experimental data.


Assuntos
Modelos Genéticos , RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processos Estocásticos , RNA/genética , Transcrição Gênica
16.
Cancer Lett ; 563: 216188, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37076041

RESUMO

Monoamine oxidase A (MAOA) is a mitochondrial enzyme that catalyzes the oxidative deamination of monoamine neurotransmitters and dietary amines. Previous studies have shown that MAOA is clinically associated with prostate cancer (PCa) progression and plays a key role in almost each stage of PCa, including castrate-resistant prostate cancer, neuroendocrine prostate cancer, metastasis, drug resistance, stemness, and perineural invasion. Moreover, MAOA expression is upregulated not only in cancer cells but also in stromal cells, intratumoral T cells, and tumor-associated macrophages; thus, targeting MAOA can be a multi-pronged approach to disrupt tumor promoting interactions between PCa cells and tumor microenvironment. Furthermore, targeting MAOA can disrupt the crosstalk between MAOA and the androgen receptor (AR) to restore enzalutamide sensitivity, blocks glucocorticoid receptor (GR)- and AR-dependent PCa cell growth, and is a potential strategy for immune checkpoint inhibition, thereby alleviating immune suppression and enhancing T cell immunity-based cancer immunotherapy. MAOA is a promising target for PCa therapy, which deserves further exploration in preclinical and clinical settings.


Assuntos
Monoaminoxidase , Neoplasias da Próstata , Masculino , Humanos , Monoaminoxidase/metabolismo , Monoaminoxidase/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Próstata/patologia , Proliferação de Células , Receptores Androgênicos , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Cancer Immunol Immunother ; 72(5): 1169-1181, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36357599

RESUMO

Antibodies targeting the programmed cell death protein 1/programmed cell death ligand-1 (PD-1/PD-L1) pathway have dramatically changed the treatment landscape of advanced non-small cell lung cancer (NSCLC). However, combination approaches are required to extend this benefit beyond a subset of patients. In addition, it is of equal interest whether these combination therapy can be applied to neoadjuvant therapy of early-stage NSCLC. In this study, we hypothesized that combining immunotherapy with anti-angiogenic therapy may have a synergistic effect in local tumor control and neoadjuvant therapy. To this end, the effect of combination of bevacizumab and pembrolizumab in humanized mouse models was evaluated. Furthermore, we innovatively constructed a neoadjuvant mouse model that can simulate postoperative recurrence and metastasis of NSCLC to perform neoadjuvant study. Tumor growth and changes in the tumor vasculature, along with the frequency and phenotype of tumor-infiltrating lymphocytes, were examined. Additionally, in vivo imaging system (IVIS) was used to observe the effect of neoadjuvant therapy. Results showed that combination therapy could inhibited tumor growth by transforming tumor with low immunoreactivity into inflamed ('hot') tumor, as demonstrated by increased CD8+granzyme B+ cytotoxic T cell infiltration. Subsequent studies revealed that this process is mediated by vascular normalization and endothelial cell activation. IVIS results showed that neoadjuvant therapy can effectively prevent postoperative recurrence and metastasis. Taken together, these preclinical studies demonstrated that the combination of bevacizumab and pembrolizumab had a synergistic effect in both advanced tumor therapy and neoadjuvant setting and therefore provide a theoretical basis for translating this basic research into clinical applications.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígeno B7-H1
19.
iScience ; 26(12): 108439, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38213790

RESUMO

Glycome in urine could be promising biomarkers for detecting pregnancy diagnosis and sex noninvasively for animals, especially for rare species. We explore the applicability of grouping golden snub-nosed monkeys by sex or diagnosing pregnancy based on their urinary glycopatterns, which are determined via lectin microarray combining mass spectrometry analysis. Sprague-Dawley rats are used to verify whether this approach and whether the glycomic biomarkers can be generalized to other mammalian species. The results show that, for both species, lectin microarray combining mass spectrometry can distinguish individuals' pregnancy status and sex; significant differences are found in the types, amounts, and terminal modification of glycans between pregnant and non-pregnant females and between females and males. This indicates the approach could be generalized to other mammalian species to group sex and detect pregnancy, yet the glycopatterns appear to be species-specific and markers developed from one species may not be directly applicable to another.

20.
Cancers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36428619

RESUMO

Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor of the digestive system with increasing morbidity and mortality. The lack of sensitive and reliable biomarkers is one of the main reasons for the poor prognosis. Volume-regulated anion channels (VRAC), which are ubiquitously expressed in the vertebrate cell membrane, are composed of leucine-rich repeat-containing 8A (LRRC8A) and four other homologous family members (LRRC8B-E). VRAC heterogeneous complex is implicated in each of the six "hallmarks of cancer" and represents a novel therapeutic target for cancer. In this study, LRRC8A was speculated to be a promising prognostic biomarker and therapeutic target for PAAD based on a series of bioinformatics analyses. Additional cell experiments and immunohistochemical assays demonstrated that LRRC8A can affect the prognosis of PAAD and is correlated to cell proliferation, cell migration, drug resistance, and immune infiltration. Functional analysis indicated that LRRC8A influences the progression and prognosis of patients with PAAD by the regulation of CD8+ T cells immune infiltration. Taken together, these results can help in the design of new therapeutic drugs for patients with PAAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...