Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 195(12): 7255-7276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36988849

RESUMO

Emerging evidences suggested that circular RNAs (circRNAs) are involved in diabetic nephropathy (DN). Accumulating evidence had suggested that the degree of podocyte is a major prognostic determinant of DN progression. However, the function and in-depth mechanisms of hsa_circ_0001162 in podocyte injury of DN remain unclear. Hsa_circ_0001162 expression was detected by real-time quantitative PCR (RT-qPCR) in peripheral blood of DN patients and high glucose-induced podocytes injury model. The cell counting kit 8, 5-ethynyl-2'-deoxyuridine, flow cytometry with Annexin V-FITC/PI staining, caspase-3 activity assay Kit, enzyme linked immunosorbent assay (ELISA), RT-qPCR and western blotting were used to evaluate the effect of hsa_circ_0001162 / miR-149-5p / MMP9 axis on high glucose-induced podocyte injury. Mechanistically, dual luciferase reporter was used to confirm the relationship of miR-149-5p and hsa_circ_0001162 or MMP9. Furthermore, RNA-pull down and immunoprecipitation assay were implemented to verify the potential regulatory effects of EIF4A3 on biogenesis of hsa_circ_0001162. Our results showed that hsa_circ_0001162 was highly expressed in peripheral blood of DN patients and high glucose-induced podocytes injury model, and the knockdown of hsa_circ_0001162 increased the proliferation, inhibited the apoptosis, and suppressed inflammatory response in high glucose-induced podocytes injury. Mechanism studies demonstrated that EIF4A3 bound with flanking sequences of hsa_circ_0001162 to promote hsa_circ_0001162 expression, upregulated hsa_circ_0001162 increased the MMP9 expression via sponging miR-149-5p, thus aggravating the high glucose-induced podocytes injury. Overall, our data demonstrated that knockdown of hsa_circ_0001162 inhibited high glucose-induced podocytes injury by regulating miR-149-5p/MMP9 axis, and intervention of hsa_circ_0001162/miR-149-5p/MMP9 axis may be a potentially promising therapeutic strategy for podocyte injury in DN patients.


Assuntos
Nefropatias Diabéticas , MicroRNAs , Podócitos , Humanos , Metaloproteinase 9 da Matriz/genética , MicroRNAs/genética , Transdução de Sinais , Apoptose/genética , Glucose/toxicidade , Proliferação de Células , Fator de Iniciação 4A em Eucariotos , RNA Helicases DEAD-box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...