Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 135914, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39370063

RESUMO

Due to their safety and efficacy, aluminium salts (Alum) are considered the most important adjuvants in human vaccines. However, Alum adjuvants are unable to elicit a cellular immune response, which is vital for the prevention of various chronic infectious diseases and cancers. Herein, we isolated and purified a water-soluble polysaccharide from Chinese yam, named CYP, which was primarily composed of →4)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and α-D-Glcp-(1→. Meanwhile, we prepared aluminium hydroxide nanoparticles (Al NPs) with a nanometer-scale size and thin stick-like shape. Being an immunostimulant, the CYP was then loaded onto the Al NPs to obtain a novel adjuvant delivery system (CYP-Al NPs) that enhances the immunostimulatory activity of CYP. Our findings showed that the CYP-Al NPs facilitated macrophages activation and promoted the antigen uptake by macrophages. The in vivo experiment showed that the CYP-Al NPs, as the adjuvant to ovalbumin, promoted the activation of dendritic cells and germinal center B cells in draining lymph nodes, induced a durable and strong antibody response, especially the Th1-type IgG2a antibody response, and improved the cytotoxic T lymphocytes response. These results demonstrated that the CYP-Al NPs could generate robust humoral and cellular responses, and has the great potential to serve as an adjuvant delivery system.

2.
ACS Biomater Sci Eng ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230397

RESUMO

We successfully synthesized folic acid (FA) immobilized hydroxyapatite (HA) nanoparticles without using a mediative reagent (e.g., silane coupling agent), and the immobilization states were evaluated and discussed. The HA nanoparticles with higher biocompatibility have two different planes, namely, c- and m-planes. These plane surfaces are rich in phosphate groups (P-site) and Ca2+ ions (C-site), respectively. We suggested that during the synthesis of the HA nanoparticles, the P-site substitution and C-site coordination with the addition of organic molecules containing -COO- ions can occur. Thus, it is possible to simultaneously immobilize two molecules to one HA nanoparticle. In this study, we successfully synthesized FA-immobilized HA nanoparticles by P-site substitution and C-site coordination reactions, which were named as substitution type and coordination type. In the substitution type, when FA was reacted with HA during the nucleation stage, the PO43- ions of HA decreased as the FA ratio of coverage surface area increased, and the crystalline phase was changed significantly from the Ca deficient HA to the carbonated HA phase. Accordingly, it was indicated that FA was immobilized on HA by the P-site substitution. In the coordination type, since FA was reacted with HA after the completion of crystal growth, the crystalline phase was changed slightly as the FA ratio of coverage surface area increased, indicating that FA was immobilized on HA by the C-site coordination. From the above, we controlled the FA immobilization states on the HA nanoparticles by the P-site substitution and the C-site coordination through the FA addition timing in the synthesis. Since the -COO- ions in FA could be selectively substituted with the P-site in HA, it is possible to directly coordinate the foreign organic molecules to the Ca2+ ions in HA. Therefore, the immobilization technique of this study is expected to achieve two different drug molecules with diagnosis and therapy functions (i.e., theranostics) on one nanoparticle.

3.
Front Microbiol ; 15: 1459188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328912

RESUMO

The stress response of pig herds poses a significant challenge in the pig breeding industry, and investigating strategies to mitigate this stress is of paramount importance. The objective of this study was to investigate the impacts of supplemental feeding of Chinese herbal mixtures to perinatal sows on antioxidant capacity and gut microbiota of sows and their offspring piglets. A total of 60 healthy sows (Large white) at fourth parity were randomly assigned to five treatment groups. The control group received a basal diet, while the TRT1 group received a basal diet supplemented with 2kg/t Bazhen powder (BZP). The TRT2, TRT3, and TRT4 groups were fed a basal diet supplemented with 1kg/t, 2kg/t, and 3kg/t Qi-Zhu- Gui-Shao soothing liver and replenishing blood powder (QZGSP), respectively. The trial lasted for 5weeks, starting from day 100 of gestation until day 21 of delivery. The results demonstrated that the inclusion of 2kg/t and 3kg/t QZGSP significantly enhanced the antioxidant capacity of sows and their offspring piglets to different degrees, thereby effectively alleviating oxidative stress. Analysis of gut microbiota revealed that QZGSP influenced the composition of gut microbiota in both sows and their offspring piglets. Specifically, at the genus level, the abundance of Christensenellaceae_R-7_group in the gut microbiota of sows in the TRT4 group was significantly lower than that in the TRT1 group (p < 0.05), while the relative abundance of Lactobacillus in the gut microbiota of sows in the TRT4 group was significantly higher than that in the CON group (p < 0.05). Furthermore, at the genus level, compared to those in the TRT1 group, piglets from the TRT4 group exhibited a significant decrease in relative abundance of Escherichia-Shigella, Parabacteroides, and Methanobrevivacter (p < 0.05), but a significant increase in Phascolarctobacterium (p < 0.05). Spearman correlation analysis indicated a positive correlation between relative abundance of Christensenellaceae_R-7_group and serum contents of T-AOC and CAT (p < 0.05), as well as a negative correlation with serum concentration MDA (p < 0.05). Additionally, there was a positive correlation between relative abundance Lactobacillus and serum levels SOD (p < 0.01) and GSH-Px (p < 0.05). Therefore, supplementation of 3kg/t QZGSP in the periparturient sow diet significantly augmented antioxidant capacity in both sows and offspring piglets, while concurrently modulating the composition and structure of their intestinal microflora. The findings from this study demonstrate that QZGSP represents a beneficial feed additive for perinatal sows.

4.
Poult Sci ; 103(11): 104225, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39217666

RESUMO

This study was conducted to explore effects of Lonicerae flos and Rhomoma curcumae longae extracts (LR) on intestinal function of broilers. Three hundred broiler chickens were randomly assigned to the following 5 groups. The control group were fed the basal diet; the antibiotic group were fed the basal diet supplemented with spectinomycin hydrochloride (50 million units/ton) + lincomycin hydrochloride (25 g/ton); the LRH, LRM and LRL groups were fed the basal diet supplemented with a high dose (750 g/ton of feed), normal dose (500 g/ton of feed), or low dose (250 g/ton of feed) of LR, respectively. The changes of intestinal structure, intestinal digestive enzyme activities, antioxidant enzyme activities, inflammatory cytokines, and bacterial abundances in the colon and cecum contents were determined. The results indicated that compared with the control group and the antibiotic group, LR significantly increased the villus length/crypt depth (VCR) of the intestine, and significantly inhibited oxidative stress and inflammatory responses in the broiler intestine. In addition, LR regulated intestinal function by increasing the abundance of the intestinal microorganisms in broilers. In conclusion, LR improved antioxidant capacity, intestinal morphology, and microorganisms, and inhibited inflammatory response. The effect of high and medium doses of LR was better than lower doses.


Assuntos
Ração Animal , Galinhas , Dieta , Intestinos , Lonicera , Extratos Vegetais , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Intestinos/efeitos dos fármacos , Dieta/veterinária , Lonicera/química , Ração Animal/análise , Distribuição Aleatória , Curcuma/química , Suplementos Nutricionais/análise , Masculino , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal/efeitos dos fármacos , Rizoma/química , Antioxidantes/metabolismo , Antioxidantes/administração & dosagem
5.
Ecotoxicol Environ Saf ; 285: 117115, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342752

RESUMO

AFB1 is a common foodborne toxin known for its potent carcinogenicity. Danshen polysaccharide (DSP) is an active ingredient of Danshen, which has been demonstrated to possess support intestinal homeostasis and anti-inflammatory activities. We utilized New Zealand White rabbits as an animal model to examine the impact of co-exposure to DSP and AFB1 on the intestines, as well as their underlying mechanisms. The results indicate that DSP elevated the abundance of Oscillospira, Coprococcus, Alistipes, Akkermansia, Bacteroides, Odoribacter, Blautia and Parabacteroides, while decreased the abundance of Sutterella, and Desulfovibrio, correcting AFB1-induced intestinal microbiota dysbiosis and enhancing microbial diversity within the gut. Moreover, DSP reduced the levels of diamine oxidase (DAO), D-Lactate, and malondialdehyde (MDA), while upregulating the expression of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), zonula occludens-1 (ZO-1), occludin, claudin-4, mucin-2 (MUC2), and secretory immunoglobulin A (sIgA), thereby alleviating the oxidative stress and intestinal barrier dysfunction induced by AFB1. DSP downregulated jejunal lipopolysaccharide (LPS) levels and the mRNA expression and proteins abundance of toll-like receptor 4 (TLR4), myeloiddifferentiationfactor 88 (MyD88), and nuclear factor kappa-B (NF-κB), thereby inhibiting the jejunal inflammation induced by AFB1. In summary, DSP alleviates AFB1-induced jejunal injury by remodeling the gut microbiota, bolstering antioxidant capabilities within the jejunum, fortifying the intestinal barrier, and suppressing the TLR4-mediated release of pro-inflammatory cytokines.

6.
Colloids Surf B Biointerfaces ; 244: 114144, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39116600

RESUMO

Traditional Alum adjuvants mainly elicit a Th2 humoral immune response, but fail to generate a robust Th1 cellular immune response. However, the cellular immune response is essential for vaccination against cancer and a number of chronic infectious diseases, including human immunodeficiency virus infection and tuberculosis. In our previous study, we demonstrated that the polysaccharide from Poria cocos (PCP) has the potential to serve as an immunologic stimulant, enhancing both humoral and cellular immune responses. However, this effect was only observed at high concentrations. In this study, to enhance the immune-stimulation effect of PCP and modify the type of immune response elicited by Alum adjuvant, we successfully developed a Pickering emulsion delivery system (PCP-Al-Pickering) using PCP-loaded Alhydrogel particles as the stabilizer. After optimization, the Pickering emulsion exhibited excellent storage capacity and effectively adsorbed the PCP and antigen. As an adjuvant delivery system, the PCP-Al-Pickering emulsion facilitated the antigen uptake by macrophages, increased the recruitment of cells at injection sites, improved the activation of dendritic cells in draining lymph nodes, elicited a potent and durable antibody response, and promoted the activation of CD4+ and CD8+ T cells. Importantly, the PCP-Al-Pickering emulsion adjuvant elicited a balanced Th1 and Th2 immune response, in comparison to Alum adjuvant. The PCP-Al-Pickering emulsion may serve as a safe and promising adjuvant delivery system to enhance immune responses.


Assuntos
Adjuvantes Imunológicos , Compostos de Alúmen , Emulsões , Polissacarídeos , Wolfiporia , Emulsões/química , Animais , Compostos de Alúmen/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Camundongos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Wolfiporia/química , Camundongos Endogâmicos BALB C , Feminino , Adjuvantes de Vacinas/química , Imunidade Celular/efeitos dos fármacos , Células Th1/imunologia , Tamanho da Partícula , Imunidade Humoral/efeitos dos fármacos , Células Th2/imunologia
7.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063007

RESUMO

In order to supplement the research gap concerning Salvia miltiorrhiza polysaccharide extracted from Danshen in NMR analysis, and to clarify its immune enhancement effect as an adjuvant, we isolated and purified SMPD-2, which is composed of nine monosaccharides such as Ara, Gal, and Glc from Danshen. Its weight average molecular weight was 37.30 ± 0.096 KDa. The main chain was mainly composed of →4)-α-D-Galp-(1→, →3,6)-ß-D-Glcp-(1→ and a small amount of α-L-Araf-(1→. After the subcutaneous injection of SMPD-2 as an adjuvant to OVA in mice, we found that it enhanced the immune response by activating DCs from lymph nodes, increasing OVA-specific antibody secretion, stimulating spleen lymphocyte activation, and showing good biosafety. In conclusion, SMPD-2 could be a promising candidate for an adjuvant.


Assuntos
Adjuvantes Imunológicos , Imunidade Celular , Imunidade Humoral , Raízes de Plantas , Polissacarídeos , Salvia miltiorrhiza , Animais , Salvia miltiorrhiza/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Camundongos , Imunidade Humoral/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Raízes de Plantas/química , Feminino , Vacinas/imunologia , Camundongos Endogâmicos BALB C , Baço/efeitos dos fármacos , Baço/imunologia
8.
Biomimetics (Basel) ; 9(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38921227

RESUMO

In the biomedical fields of bone regenerative therapy, the immobilization of proteins on the bioceramic particles to maintain their highly ordered structures is significantly important. In this review, we comprehensively discussed the importance of the specific surface layer, which can be called "non-apatitic layer", affecting the immobilization of proteins on particles such as hydroxyapatite and amorphous silica. It was suggested that the water molecules and ions contained in the non-apatitic layer can determine and control the protein immobilization states. In amorphous silica particles, the direct interactions between proteins and silanol groups make it difficult to immobilize the proteins and maintain their highly ordered structures. Thus, the importance of the formation of a surface layer consisting of water molecules and ions (i.e., a non-apatitic layer) on the particle surfaces for immobilizing proteins and maintaining their highly ordered structures was suggested and described. In particular, chlorine-containing amorphous silica particles were also described, which can effectively form the surface layer of protein immobilization carriers. The design of the bio-interactive and bio-compatible surfaces for protein immobilization while maintaining the highly ordered structures will improve cell adhesion and tissue formation, thereby contributing to the construction of social infrastructures to support super-aged society.

9.
Int J Biol Macromol ; 273(Pt 1): 133067, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866287

RESUMO

Adjuvants, as the essential component of vaccines, are crucial in enhancing the magnitude, breadth and durability of immune responses. Unfortunately, commonly used Alum adjuvants predominantly provoke humoral immune response, but fail to evoke cellular immune response, which is crucial for the prevention of various chronic infectious diseases and cancers. Thus, it is necessary to develop effective adjuvants to simultaneously induce humoral and cellular immune response. In this work, we obtained a water soluble polysaccharide isolated and purified from Poria cocos, named as PCP, and explored the possibility of PCP as a vaccine adjuvant. The PCP, with Mw of 20.112 kDa, primarily consisted of →6)-α-D-Galp-(1→, with a small amount of →3)-ß-D-Glcp-(1 â†’ and →4)-ß-D-Glcp-(1→. Our results demonstrated that the PCP promoted the activation of dendritic cells (DCs) and macrophages in vitro. As the adjuvant to ovalbumin, the PCP facilitated the activation of DCs in lymph nodes, and evoked strong antibody response with a combination of Th1 and Th2 immune responses. Moreover, compared to Alum adjuvant, the PCP markedly induced a potent cellular response, especially the cytotoxic T lymphocytes response. Therefore, we confirmed that the PCP has great potential to be an available adjuvant for simultaneously inducing humoral and cellular immune responses.


Assuntos
Adjuvantes Imunológicos , Células Dendríticas , Polissacarídeos , Solubilidade , Água , Animais , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Camundongos , Água/química , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Wolfiporia/química , Ovalbumina/imunologia , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Poria/química
10.
Front Vet Sci ; 11: 1381226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764854

RESUMO

The present study was designed to evaluate the effect of a mixture of Chinese medicinal residues (CMRs) consisting of Salvia miltiorrhiza residues (SMR) and Isatidis Radix residues (IRR) on productive performance, egg quality, serum lipid and hormone levels, liver and blood antioxidant capacity, oviduct inflammation levels, and gut microbiota in the late-laying stage. A total of 288 fifty-four-week-old BaShang long-tailed hens were divided into four groups. The feed trial period was 8 weeks. The control group was fed the basic diet as a CCMR group, supplemented with 3, 4, and 6% for the experimental groups LCMR, MCMR, and HCMR. The egg production rate of the MCMR group was 8.1% higher than that of the CCMR group (p < 0.05). Serum triglyceride (TG) levels of hens of the CMR-supplemented group were significantly decreased than those of the CCMR group (p < 0.05). The group supplemented with different levels of CMR had significantly higher serum HDL-C levels compared with the control group (p < 0.05). Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were remarkably increased for the LCMR and MCMR groups and significantly decreased for the HCMR group compared to CCMR (p < 0.05). Serum and liver glutathione peroxidase (GSH-PX) activities were significantly increased, and malondialdehyde (MDA) levels were significantly decreased in the MCMR group compared to the CCMR group (p < 0.05). The expression levels of tubal inflammatory factor markers (IL-4, IL-1ß, TNF-α) in the MCMR and HCMR groups were consistent with the pathological findings of the sections. As for cecal microbiota, supplementation with CMR affected the alpha diversity of the cecum microbiome at the genus level. The Shannon index was significantly higher in the MCMR group than in the CCMR and HCMR groups (p < 0.05). Supplementation with different levels of CMR mainly regulated the ratio of intestinal Firmicutes to Bacteroidetes and the abundance of phyla such as Proteobacteria. In addition, CMR supplementation at different levels in the diet enriched lipid-metabolizing bacteria, such as Bacteroides and Ruminococcus_gnavus_group. Furthermore, according to linear discriminant analysis (LDA) effect size (LEfSe) analysis, the MCMR group showed an increase in the number of short-chain fatty acid-producing bacteria Romboutsia and fiber-degrading specialized bacteria Monoglobus. Therefore, supplementation of appropriate amounts of CMR to the diet of laying hens enhanced reproductive hormone levels, hepatic antioxidant capacity, and lipid metabolism, alleviated the levels of oviductal inflammatory factors, and modulated the abundance structure of bacterial flora to improve the late-laying performance and egg quality. The results of the current study showed that CMR is a beneficial feed supplement for chickens when added in moderation.

11.
Front Vet Sci ; 11: 1388632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681856

RESUMO

Alternatives to antibiotics are urgently needed to maintain broiler growth and health. The present study was conducted to evaluate the effects of Lonicera flos and Curcuma longa L. extracts (LCE) as antibiotic substitutes on growth performance, antioxidant capacity and immune response in broilers. A total of 480 one-day-old female broilers (WOD168) were allocated to 3 treatments with 5 replicates of 32 birds for 35 days. The 3 treatments were: an antibiotic-free basal diet (control, CON), CON +50 mg/kg spectinomycin hydrochloride and 25 mg/kg lincomycin hydrochloride (ANT), CON +500 mg/kg LCE (LCE). During the entire experimental period, supplementation of ANT and LCE increased (p < 0.01) average daily gain (ADG) and decreased (p < 0.05) feed conversion ratio (FCR), thereby resulting in greater final body weight (BW) compared with CON. Dietary LCE supplementation increased (p < 0.05) serum (glutathione peroxidase) GSH-Px, (superoxide dismutase) SOD and total antioxidant capacity (T-AOC) activities, and decreased (p < 0.05) serum malonaldehyde (MDA) concentration at day 35 compared with CON. There was no significant difference in serum catalase (CAT) activity among treatments. Birds in LCE group had lower (p < 0.05) MDA concentration and higher SOD activity in liver than those in CON and ANT groups at day 35. Birds in LCE group had higher (p < 0.05) phagocytic index and serum antibody titers to Newcastle disease virus (NDV) than those in CON group. Lower (p < 0.05) concentrations of pro-inflammatory cytokines and higher (p < 0.05) concentrations of anti-inflammatory cytokines in serum and liver were observed in birds fed LCE diet than those fed CON diet. In conclusion, dietary supplementation of LCE improved growth performance by enhancing antioxidant capacity, strengthening immune system and alleviating inflammation, which has potential as antibiotic alternatives.

12.
Ecotoxicol Environ Saf ; 276: 116344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636259

RESUMO

Aflatoxin B1 (AFB1) is one of the common dietary contaminants worldwide, which can harm the liver of humans and animals. Salvia miltiorrhiza polysaccharide (SMP) is a natural plant-derived polysaccharide with numerous pharmacological activities, including hepatoprotective properties. The purpose of this study is to explore the intervention effect of SMP on AFB1-induced liver injury and its underlying mechanisms in rabbits. The rabbits were administered AFB1 (25 µg/kg/feed) and or treatment with SMP (300, 600, 900 mg/kg/feed) for 42 days. The results showed that SMP effectively alleviated the negative impact of AFB1 on rabbits' productivity by increasing average daily weight gain (ADG) and feed conversion rate (FCR). SMP reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in serum, ameliorating AFB1-induced hepatic pathological changes. Additionally, SMP enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activity, and inhibited reactive oxygen species (ROS), malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, thus mitigating AFB1-induced oxidative stress and inflammatory responses. Moreover, SMP upregulated the expression of nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and B-cell lymphoma 2 (Bcl2) while downregulating kelch like ECH associated protein 1 (Keap1), cytochrome c (cyt.c), caspase9, caspase3, and Bcl-2-associated X protein (Bax) expression, thereby inhibiting AFB1-induced hepatocyte apoptosis. Consequently, our findings conclude that SMP can mitigate AFB1-induced liver damage by activating the Nrf2/HO-1 pathway and inhibiting mitochondria-dependent apoptotic pathway in rabbits.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Polissacarídeos , Salvia miltiorrhiza , Animais , Coelhos , Polissacarídeos/farmacologia , Aflatoxina B1/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Salvia miltiorrhiza/química , Fígado/efeitos dos fármacos , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Alanina Transaminase/sangue , Espécies Reativas de Oxigênio/metabolismo
13.
Ecotoxicol Environ Saf ; 275: 116253, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537475

RESUMO

Pregnancy is a sensitive window period for bisphenol A (BPA) exposure. BPA can pass through the placenta and cause reproductive damage in offspring female mice. Even BPA that is not metabolized during lactation can be passed through milk. Cuscuta chinensis flavonoids (CCFs) can alleviate reproductive damage caused by BPA, but the mechanism of action is unclear. To investigate the potential mitigating impact of CCFs on ovarian damage resulting from BPA exposure during pregnancy, we administered BPA and CCFs to pregnant mice during the gestational period spanning from 0.5 to 17.5 days. Aseptic collection of serum and ovaries from female mice was conducted on postnatal day 21 (PND21). Serum hormone levels and tissue receptor levels were quantified utilizing ELISA and PCR, while ovaries underwent sequencing and analysis through transcriptomics and metabolomics techniques. Additionally, the assessment of ovarian oxidative stress levels was carried out as part of the comprehensive analysis. The results showed that CCFs administration mitigated the adverse effects induced by BPA exposure on ovarian index, hormone levels, receptor expression, and mRNA expression levels in female offspring mice. The joint analysis of transcriptome and metabolome revealed 48 enriched pathways in positive ion mode and 44 enriched pathways in negative ion mode. Among them, the central carbon metabolism pathway is significantly regulated by BPA and CCFs. The screened sequencing results were verified through qPCR and biochemical kits. In this study, CCFs may participate in the central carbon metabolism pathway by reducing the expression of Kit proto-oncogene (Kit), hexokinase 1 gene (Hk1) and pyruvate kinase M (Pkm) mRNA and increasing the expression of h-ras proto-oncogene (Hras), sirtuin 3 (Sirt3), sirtuin 6 (Sirt6) and TP53 induced glycolysis regulatory phosphatase gene (Tigar) mRNA, thereby resisting the effects of BPA on the body. At the same time, the metabolic levels of D-Fructose 1,6-bisphosphate and L-Asparagine tend to be stable. Moreover, CCFs demonstrated a capacity to diminish the BPA-induced escalation in reactive oxygen species (ROS) and malondialdehyde (MDA). Simultaneously, it exhibited the ability to elevate levels of glutathione (GSH) and catalase (CAT), thereby effectively preventing peroxidation. In summary, CCFs alleviate BPA-induced ovarian damage in offspring female mice by regulating the central carbon metabolism pathway. This study will improve the information on BPA reproductive damage antagonist drugs and provide a theoretical basis for protecting animal reproductive health.


Assuntos
Cuscuta , Disruptores Endócrinos , Fenóis , Sirtuínas , Gravidez , Camundongos , Animais , Feminino , Ovário , Cuscuta/genética , Flavonoides/farmacologia , Compostos Benzidrílicos/toxicidade , Hormônios , RNA Mensageiro , Disruptores Endócrinos/farmacologia
14.
Ecotoxicol Environ Saf ; 264: 115478, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716070

RESUMO

Aflatoxin B1 (AFB1) is considered the most toxic carcinogenic compound, and exposure to AFB1 is highly associated with hepatocellular carcinoma. The aim of this study was to investigate the effects of different doses of AFB1 on growth performance and the liver of rabbits, as well as explore its underlying mechanisms. A total of eighty 30-day-old meat rabbits were randomly divided into four treatments. The control group was fed a pollution-free diet, while the AFL, AFM, and AFH groups were fed contaminated diets containing 13 µg/kg, 19 µg/kg, and 25 µg/kg of AFB1, respectively. The results showed that AFB1 had detrimental effects on the production performance of rabbits, resulting in decreased weight gain. Additionally, AFB1 exposure was associated with increased activity of Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT), as well as decreased levels of total protein (TP) and albumin (ALB) in the serum. AFB1 induced the production of reactive oxygen species (ROS) and malondialdehyde (MDA) while inhibiting the activity of glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activity in liver tissues. AFB1 decreased the mRNA transcription and protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H dehydrogenase quinone-1 (NQO-1). AFB1 not only decreased the contents of cytochrome P4501A2 (CYP1A2), cytochrome P4502A6 (CYP2A6) and cytochrome P4503A4 (CYP3A4) but also increased the content of AFB1-DNA adducts in the liver. Furthermore, AFB1 enhanced the expression of cytochrome c (cyt-c), caspase-9, caspase-3, and Bcl-2-associated X protein (Bax), while inhibiting the expression of B-cell lymphoma 2 (Bcl-2). Therefore, we demonstrated that AFB1 triggered apoptosis in rabbit hepatocytes via mediating oxidative stress and switching on the mitochondrial apoptosis pathway, and decreased rabbit performance.


Assuntos
Aflatoxina B1 , Estresse Oxidativo , Animais , Coelhos , Aflatoxina B1/toxicidade , Hepatócitos , Apoptose , Antioxidantes/metabolismo , Fígado , Glutationa/metabolismo , Citocromos
15.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511261

RESUMO

Perfluorooctanoic acid (PFOA) is widely used in aviation science and technology, transportation, electronics, kitchenware, and other household products. It is stable in the environment and has potential nephrotoxicity. To investigate the effect of PFOA exposure during pregnancy on the kidneys of offspring mice, a total of 20 mice at day 0 of gestation were randomly divided into two groups (10 mice in each group), and each group was administered 0.2 mL of PFOA at a dose of 3.5 mg/kg or deionized water by gavage during gestation. The kidney weight, kidney index, histopathological observation, serum biochemistry, transcriptomics, and metabolomics of the kidneys of the 35-day offspring mice were analyzed. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels in the kidney were measured. Transcriptome analysis results showed that 387 genes were up-regulated and 283 genes were down-regulated compared with the control group. These differentially expressed genes (DEGs) were mainly concentrated in the peroxisome-proliferator-activated receptor (PPAR) signaling pathway and circadian rhythm. Compared with the control group, 64 and 73 metabolites were up- and down-regulated, respectively, in the PFOA group. The altered metabolites were mainly enriched in the biosynthesis of unsaturated fatty acids. PFOA can affect the expression levels of circadian rhythm-related genes in the kidneys of offspring mice, and this change is influenced by the PPAR signaling pathway. PFOA causes oxidative stress in the kidneys, which is responsible for significant changes in metabolites associated with the biosynthesis of unsaturated fatty acids.


Assuntos
Fluorocarbonos , Transcriptoma , Animais , Feminino , Camundongos , Gravidez , Caprilatos/toxicidade , Ácidos Graxos Insaturados/metabolismo , Fluorocarbonos/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Metaboloma , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Transdução de Sinais , Injúria Renal Aguda
16.
Front Microbiol ; 14: 1039287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056742

RESUMO

The aim of this study was to explore the efficacy of Compound small peptide of Chinese medicine (CSPCM) on cyclophosphamide (CTX) induced immunosuppression in mice. The 100 male Kunming mice were divided into 5 groups: group A (control group), group B (model group), group C (100 mg/kg.bw CSPCM), group D (200 mg/kg.bw CSPCM) and group E (400 mg/kg.bw CSPCM). At 1-3 days, mice of group B, C, D and E were intraperitoneally injected with 80 mg/kg.bw CTX. The results showed that compared with group A, the immune organ index, body weight change, RORγ T gene expression, RORγ T protein expression, CD3+ cell number, Th17 number and Alpha index, white blood cell count, lymphocyte count and monocyte count were significantly decreased in group B (p < 0.05), while Foxp3 gene expression, Foxp3 protein expression and Treg cell number were significantly increased (p < 0.05), CSPCM has a good therapeutic effect on the above abnormalities caused by CTX. CTX caused the decrease of intestinal flora richness and the abnormal structure of intestinal flora, and CSPCM could change the intestinal flora destroyed by CTX to the direction of intestinal flora of healthy mice. On the whole, CSPCM has a good therapeutic effect on CTX-induced immunosuppression in mice, which is reflected in the index of immune organs, the number of T lymphocytes and Th17 cells increased, the number of Treg cells decreased and the structure of intestinal flora was reconstructed.

17.
Ecotoxicol Environ Saf ; 255: 114831, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966614

RESUMO

Bisphenol A (BPA) is a common environmental endocrine disruptor, and overexposure is a threat to male reproduction. Although studies have confirmed that BPA exposure causes a decrease in sperm quality in offspring, the dosage used, and the underlying mechanism is not clear. The purpose of this study is to investigate whether Cuscuta chinensis flavonoids (CCFs) can antagonize or alleviate BPA-induced reproductive injury by analyzing the processes associated with BPA's impairment of sperm quality. BPA and 40 mg/kg bw/day of CCFs were administered to the dams at gestation day (GD) 0.5-17.5. Testicles and serum of male mice are collected on postnatal day 56 (PND56), and spermatozoa are collected to detect relevant indicators. Our results showed that compared with the BPA group, CCFs could significantly increase the serum contents of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T) in males at PND 56, as well as the transcription levels of estrogen receptor alpha (ERα), steroidogenic acute regulatory protein (StAR) and Cytochrome P450 family 11, subfamily A, and member 1 (CYP11A1). CCFs also significantly inhibit the production of reactive oxygen species (ROS), reduce oxidative stress, increase mitochondrial membrane potential, and reduce sperm apoptosis. It also has a certain regulatory effect on sperm telomere length and mitochondrial DNA copy number. These results suggest that CCFs can increase reproductive hormone and receptor levels in adult males by regulating the expression of oxidative stress correlated factors, and ultimately mitigate the negative effects of BPA on sperm quality in male mice.


Assuntos
Cuscuta , Camundongos , Masculino , Animais , Flavonoides/farmacologia , Flavonoides/metabolismo , Sementes , Espermatozoides , Testículo , Compostos Benzidrílicos/metabolismo , Testosterona , Estresse Oxidativo
18.
J Biomed Mater Res A ; 111(8): 1176-1184, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36740897

RESUMO

Radiation therapy has been widely used in the clinical treatment of tumors. Due to the low radiation absorption of tumors, a high dose of ionizing radiation is often required during radiotherapy, which causes serious damage to normal tissues near tumors. Boron neutron capture therapy (BNCT) is more targeted than conventional radiotherapy. To improve the therapeutic effect of cancer, albumin was selected as the drug carrier to wrap the fluorescent tracer boron drug BS-CyP and prepare the nanoparticles. Then, we developed a novel tumor-targeting nano-boron drug by using hyaluronic acid to modify the nanoparticles. We found that BS-CyP albumin nanoparticles modified with hyaluronic acid effectively delayed drug release and enhanced the aggregation, in tumors, showing good safety with no obvious toxicity to cells and mice. This study confirmed the advantages of boron drugs modified with hyaluronic acid targeting tumors and may provide a reference for BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Neoplasias , Animais , Camundongos , Ácido Hialurônico , Boro/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos de Boro
19.
Ecotoxicol Environ Saf ; 249: 114428, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516627

RESUMO

Florfenicol (FFC) is a commonly used antibiotic in animal breeding, especially in broiler breeding. Previous studies found that FFC could affect the liver function of chickens. However, the mechanisms underlying the effects of FFC on liver function are still not completely clear. Moreover, the research on drugs that antagonize FFC hepatotoxicity is relatively lacking. Salvia miltiorrhiza polysaccharides (SMPs) have been proved to have obvious liver protection effects. Therefore, we exposed chicks to FFC at the clinically recommended dose of 0.15 g/L. At the same time, 0.15 g/L FFC and 5 g/L SMPs were given to another group of chicks. After 5 days of continuous administration, the livers of chicks from different treatment groups were sequenced by transcriptome and proteome. Based on the analysis of sequencing data, we also focused on the detection of inflammation and oxidation indicators related to the phagosome signaling pathway with significant enrichment of differential factors in the livers of chicks. The results showed that some significantly differentially expressed genes and proteins induced by FFC were enriched in the phagosome signaling pathway, and they increased the expression levels of inflammatory factors and peroxides. However, SMPs intervention significantly reversed the tendency of FFC to alter phagosome signaling pathways and reduced the expression levels of inflammatory factors and peroxides. In conclusion, FFC caused liver inflammation and oxidative stress in chicks by regulating the phagosome signaling pathway. Meanwhile, SMPs could improve the adverse effects of FFC on the phagosome signaling pathway. This study provided new insights into the ameliorative effects and mechanisms of SMPs on hepatotoxicity of FFC.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Salvia miltiorrhiza , Animais , Galinhas/metabolismo , Melhoramento Vegetal , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Transdução de Sinais , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Estresse Oxidativo
20.
Poult Sci ; 101(12): 102187, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36215740

RESUMO

Our previous study has demonstrated that administration of ginsenoside Rg3 ameliorates immune stress by inhibiting inflammatory responses, reducing oxidative damage and upregulating mRNA expression of mTOR, SOD-1, and HO-1. However, the specific mechanism in relation to the protective effect of ginsenoside Rg3 on stressed broilers especially the metabolites alteration remains obscure. The present study aimed to investigate the underlined mechanism in relation to the pathogenesis and protective effect of ginsenoside Rg3 on stressed broilers using liquid chromatograph-mass spectrometry profiling. Eighteen broiler chicks were randomly allocated to 3 treatments: Control, Model and Rg3. Chickens in Rg3 group received intraperitoneally administered 1 mg/kg Rg3 2 h before LPS challenge. Then the broilers were intraperitoneally injection of 250 µg/kg LPS at the age of 12, 14, 33, and 35 d to induce immune stress. Control group was injected with an equivalent amount of sterile saline. At the end of the experiment, the serum was obtained for metabolomics analysis. The changes in serum metabolic profiles were investigated with the application of metabolomics approach. Distinct changes in metabolite patterns in serum were observed by orthogonal partial least square-discriminate analysis. In total, 35 metabolites were identified, among which 17 differential metabolites were found between Control and Model group, and 18 differential metabolites were identified between Model and Rg3 group. Metabolic pathway analysis revealed potential serum metabolites involved in oxidative stress and inflammation, degradation of lipid and protein in broiler chicks with immune stress. In addition, the protective effect of Rg3 on the stressed chicks may be largely mediated by BCAA metabolism, apoptosis and mTOR signaling pathway. These results suggested the potential biomarkers involved in pathogenesis and prevention of stress induced by Escherichia coli lipopolysaccharide.


Assuntos
Galinhas , Lipopolissacarídeos , Animais , Serina-Treonina Quinases TOR , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...